© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11n268
L11n268
L11n270
L11n270
L11n269
Knotscape
This page is passe. Go here instead!

The 3-Component Link

L11n269

Visit L11n269's page at Knotilus!

Acknowledgement

L11n269 as Morse Link
DrawMorseLink

PD Presentation: X6172 X3,11,4,10 X7,17,8,16 X15,5,16,8 X18,11,19,12 X22,17,9,18 X20,13,21,14 X12,19,13,20 X14,21,15,22 X2536 X9,1,10,4

Gauss Code: {{1, -10, -2, 11}, {10, -1, -3, 4}, {-11, 2, 5, -8, 7, -9, -4, 3, 6, -5, 8, -7, 9, -6}}

Jones Polynomial: - q-8 + q-7 - 2q-6 + 2q-5 - 3q-4 + 3q-3 + 2q-1 + 1 + q2

A2 (sl(3)) Invariant: - q-24 - q-22 - 3q-20 - 3q-18 - 3q-16 - 4q-14 - q-12 + q-10 + 6q-8 + 8q-6 + 8q-4 + 8q-2 + 5 + 4q2 + 2q4 + q6

HOMFLY-PT Polynomial: 3z-2 + 7 + 5z2 + z4 - 8a2z-2 - 20a2 - 20a2z2 - 8a2z4 - a2z6 + 7a4z-2 + 18a4 + 18a4z2 + 7a4z4 + a4z6 - 2a6z-2 - 5a6 - 4a6z2 - a6z4

Kauffman Polynomial: - 3z-2 + 13 - 23z2 + 21z4 - 8z6 + z8 + 8az-1 - 24az + 24az3 - 9az5 + az7 - 8a2z-2 + 28a2 - 46a2z2 + 33a2z4 - 10a2z6 + a2z8 + 15a3z-1 - 45a3z + 46a3z3 - 17a3z5 + 2a3z7 - 7a4z-2 + 22a4 - 32a4z2 + 24a4z4 - 8a4z6 + a4z8 + 7a5z-1 - 21a5z + 26a5z3 - 12a5z5 + 2a5z7 - 2a6z-2 + 7a6 - 9a6z2 + 9a6z4 - 5a6z6 + a6z8 - a7z-1 + 3a7z - 3a7z5 + a7z7 + a8 - 3a8z4 + a8z6 - a9z-1 + 3a9z - 4a9z3 + a9z5

Khovanov Homology:
trqj r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4
j = 5           1
j = 3           1
j = 1         1  
j = -1       3    
j = -3      141   
j = -5     3      
j = -7    121     
j = -9   23       
j = -11   11       
j = -13 12         
j = -15            
j = -171           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
3
In[3]:=
Show[DrawMorseLink[Link[11, NonAlternating, 269]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, NonAlternating, 269]]
Out[4]=   
PD[X[6, 1, 7, 2], X[3, 11, 4, 10], X[7, 17, 8, 16], X[15, 5, 16, 8], 
 
>   X[18, 11, 19, 12], X[22, 17, 9, 18], X[20, 13, 21, 14], X[12, 19, 13, 20], 
 
>   X[14, 21, 15, 22], X[2, 5, 3, 6], X[9, 1, 10, 4]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -10, -2, 11}, {10, -1, -3, 4}, 
 
>   {-11, 2, 5, -8, 7, -9, -4, 3, 6, -5, 8, -7, 9, -6}]
In[6]:=
Jones[L][q]
Out[6]=   
     -8    -7   2    2    3    3    2    2
1 - q   + q   - -- + -- - -- + -- + - + q
                 6    5    4    3   q
                q    q    q    q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -24    -22    3     3     3     4     -12    -10   6    8    8    8
5 - q    - q    - --- - --- - --- - --- - q    + q    + -- + -- + -- + -- + 
                   20    18    16    14                  8    6    4    2
                  q     q     q     q                   q    q    q    q
 
       2      4    6
>   4 q  + 2 q  + q
In[8]:=
HOMFLYPT[Link[11, NonAlternating, 269]][a, z]
Out[8]=   
                                   2      4      6
        2       4      6   3    8 a    7 a    2 a       2       2  2
7 - 20 a  + 18 a  - 5 a  + -- - ---- + ---- - ---- + 5 z  - 20 a  z  + 
                            2     2      2      2
                           z     z      z      z
 
        4  2      6  2    4      2  4      4  4    6  4    2  6    4  6
>   18 a  z  - 4 a  z  + z  - 8 a  z  + 7 a  z  - a  z  - a  z  + a  z
In[9]:=
Kauffman[Link[11, NonAlternating, 269]][a, z]
Out[9]=   
                                         2      4      6             3      5
         2       4      6    8   3    8 a    7 a    2 a    8 a   15 a    7 a
13 + 28 a  + 22 a  + 7 a  + a  - -- - ---- - ---- - ---- + --- + ----- + ---- - 
                                  2     2      2      2     z      z      z
                                 z     z      z      z
 
     7    9
    a    a                 3         5        7        9         2       2  2
>   -- - -- - 24 a z - 45 a  z - 21 a  z + 3 a  z + 3 a  z - 23 z  - 46 a  z  - 
    z    z
 
        4  2      6  2         3       3  3       5  3      9  3       4
>   32 a  z  - 9 a  z  + 24 a z  + 46 a  z  + 26 a  z  - 4 a  z  + 21 z  + 
 
        2  4       4  4      6  4      8  4        5       3  5       5  5
>   33 a  z  + 24 a  z  + 9 a  z  - 3 a  z  - 9 a z  - 17 a  z  - 12 a  z  - 
 
       7  5    9  5      6       2  6      4  6      6  6    8  6      7
>   3 a  z  + a  z  - 8 z  - 10 a  z  - 8 a  z  - 5 a  z  + a  z  + a z  + 
 
       3  7      5  7    7  7    8    2  8    4  8    6  8
>   2 a  z  + 2 a  z  + a  z  + z  + a  z  + a  z  + a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
4    3     1        1        2        1        2       1        3       1
-- + - + ------ + ------ + ------ + ------ + ----- + ------ + ----- + ----- + 
 3   q    17  7    13  6    13  5    11  4    9  4    11  3    9  3    7  3
q        q   t    q   t    q   t    q   t    q  t    q   t    q  t    q  t
 
      2       3      1      1     t       2    3  4    5  4
>   ----- + ----- + ---- + ---- + -- + q t  + q  t  + q  t
     7  2    5  2    7      3      3
    q  t    q  t    q  t   q  t   q


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11n269
L11n268
L11n268
L11n270
L11n270