© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11n267
L11n267
L11n269
L11n269
L11n268
Knotscape
This page is passe. Go here instead!

The 3-Component Link

L11n268

Visit L11n268's page at Knotilus!

Acknowledgement

L11n268 as Morse Link
DrawMorseLink

PD Presentation: X6172 X3,11,4,10 X7,17,8,16 X15,5,16,8 X11,19,12,18 X17,9,18,22 X13,21,14,20 X19,13,20,12 X21,15,22,14 X2536 X9,1,10,4

Gauss Code: {{1, -10, -2, 11}, {10, -1, -3, 4}, {-11, 2, -5, 8, -7, 9, -4, 3, -6, 5, -8, 7, -9, 6}}

Jones Polynomial: 3q2 - 3q3 + 7q4 - 7q5 + 10q6 - 8q7 + 6q8 - 5q9 + 2q10 - q11

A2 (sl(3)) Invariant: 3q6 + 2q8 + 6q10 + 6q12 + 7q14 + 10q16 + 5q18 + 5q20 - q22 - 3q24 - 3q26 - 5q28 - 2q30 - 2q32 - q34

HOMFLY-PT Polynomial: - 2a-10z-2 - 3a-10 - a-10z2 + 7a-8z-2 + 15a-8 + 12a-8z2 + 3a-8z4 - 8a-6z-2 - 22a-6 - 23a-6z2 - 11a-6z4 - 2a-6z6 + 3a-4z-2 + 10a-4 + 11a-4z2 + 3a-4z4

Kauffman Polynomial: - a-13z-1 + 3a-13z - 3a-13z3 + a-13z5 + a-12 - 4a-12z4 + 2a-12z6 - a-11z-1 + 3a-11z - 6a-11z3 - a-11z5 + 2a-11z7 - 2a-10z-2 + 7a-10 - 9a-10z2 + 4a-10z4 - 3a-10z6 + 2a-10z8 + 7a-9z-1 - 21a-9z + 26a-9z3 - 13a-9z5 + 2a-9z7 + a-9z9 - 7a-8z-2 + 22a-8 - 36a-8z2 + 44a-8z4 - 24a-8z6 + 6a-8z8 + 15a-7z-1 - 45a-7z + 52a-7z3 - 23a-7z5 + 3a-7z7 + a-7z9 - 8a-6z-2 + 28a-6 - 46a-6z2 + 42a-6z4 - 19a-6z6 + 4a-6z8 + 8a-5z-1 - 24a-5z + 23a-5z3 - 12a-5z5 + 3a-5z7 - 3a-4z-2 + 13a-4 - 19a-4z2 + 6a-4z4

Khovanov Homology:
trqj r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7r = 8r = 9
j = 23         1
j = 21        1 
j = 19       41 
j = 17      21  
j = 15     64   
j = 13    42    
j = 11   47     
j = 9  33      
j = 7  4       
j = 533        
j = 33         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
3
In[3]:=
Show[DrawMorseLink[Link[11, NonAlternating, 268]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, NonAlternating, 268]]
Out[4]=   
PD[X[6, 1, 7, 2], X[3, 11, 4, 10], X[7, 17, 8, 16], X[15, 5, 16, 8], 
 
>   X[11, 19, 12, 18], X[17, 9, 18, 22], X[13, 21, 14, 20], X[19, 13, 20, 12], 
 
>   X[21, 15, 22, 14], X[2, 5, 3, 6], X[9, 1, 10, 4]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -10, -2, 11}, {10, -1, -3, 4}, 
 
>   {-11, 2, -5, 8, -7, 9, -4, 3, -6, 5, -8, 7, -9, 6}]
In[6]:=
Jones[L][q]
Out[6]=   
   2      3      4      5       6      7      8      9      10    11
3 q  - 3 q  + 7 q  - 7 q  + 10 q  - 8 q  + 6 q  - 5 q  + 2 q   - q
In[7]:=
A2Invariant[L][q]
Out[7]=   
   6      8      10      12      14       16      18      20    22      24
3 q  + 2 q  + 6 q   + 6 q   + 7 q   + 10 q   + 5 q   + 5 q   - q   - 3 q   - 
 
       26      28      30      32    34
>   3 q   - 5 q   - 2 q   - 2 q   - q
In[8]:=
HOMFLYPT[Link[11, NonAlternating, 268]][a, z]
Out[8]=   
                                                       2        2       2
-3    15   22   10     2        7       8       3     z     12 z    23 z
--- + -- - -- + -- - ------ + ----- - ----- + ----- - --- + ----- - ----- + 
 10    8    6    4    10  2    8  2    6  2    4  2    10     8       6
a     a    a    a    a   z    a  z    a  z    a  z    a      a       a
 
        2      4       4      4      6
    11 z    3 z    11 z    3 z    2 z
>   ----- + ---- - ----- + ---- - ----
      4       8      6       4      6
     a       a      a       a      a
In[9]:=
Kauffman[Link[11, NonAlternating, 268]][a, z]
Out[9]=   
 -12    7    22   28   13     2        7       8       3       1       1
a    + --- + -- + -- + -- - ------ - ----- - ----- - ----- - ----- - ----- + 
        10    8    6    4    10  2    8  2    6  2    4  2    13      11
       a     a    a    a    a   z    a  z    a  z    a  z    a   z   a   z
 
                                                             2       2
     7      15     8     3 z   3 z   21 z   45 z   24 z   9 z    36 z
>   ---- + ---- + ---- + --- + --- - ---- - ---- - ---- - ---- - ----- - 
     9      7      5      13    11     9      7      5     10      8
    a  z   a  z   a  z   a     a      a      a      a     a       a
 
        2       2      3      3       3       3       3      4      4       4
    46 z    19 z    3 z    6 z    26 z    52 z    23 z    4 z    4 z    44 z
>   ----- - ----- - ---- - ---- + ----- + ----- + ----- - ---- + ---- + ----- + 
      6       4      13     11      9       7       5      12     10      8
     a       a      a      a       a       a       a      a      a       a
 
        4      4    5     5        5       5       5      6      6       6
    42 z    6 z    z     z     13 z    23 z    12 z    2 z    3 z    24 z
>   ----- + ---- + --- - --- - ----- - ----- - ----- + ---- - ---- - ----- - 
      6       4     13    11     9       7       5      12     10      8
     a       a     a     a      a       a       a      a      a       a
 
        6      7      7      7      7      8      8      8    9    9
    19 z    2 z    2 z    3 z    3 z    2 z    6 z    4 z    z    z
>   ----- + ---- + ---- + ---- + ---- + ---- + ---- + ---- + -- + --
      6      11      9      7      5     10      8      6     9    7
     a      a       a      a      a     a       a      a     a    a
In[10]:=
Kh[L][q, t]
Out[10]=   
   3      5      5        7  2      9  2      9  3      11  3      11  4
3 q  + 3 q  + 3 q  t + 4 q  t  + 3 q  t  + 3 q  t  + 4 q   t  + 7 q   t  + 
 
       13  4      13  5      15  5      15  6      17  6    17  7      19  7
>   4 q   t  + 2 q   t  + 6 q   t  + 4 q   t  + 2 q   t  + q   t  + 4 q   t  + 
 
     19  8    21  8    23  9
>   q   t  + q   t  + q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11n268
L11n267
L11n267
L11n269
L11n269