© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11n204
L11n204
L11n206
L11n206
L11n205
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11n205

Visit L11n205's page at Knotilus!

Acknowledgement

L11n205 as Morse Link
DrawMorseLink

PD Presentation: X10,1,11,2 X7,16,8,17 X18,12,19,11 X2,19,3,20 X3,12,4,13 X13,21,14,20 X14,5,15,6 X6,9,7,10 X22,16,9,15 X17,8,18,1 X21,4,22,5

Gauss Code: {{1, -4, -5, 11, 7, -8, -2, 10}, {8, -1, 3, 5, -6, -7, 9, 2, -10, -3, 4, 6, -11, -9}}

Jones Polynomial: - q-17/2 - q-7/2

A2 (sl(3)) Invariant: q-26 + 2q-24 + 2q-22 + q-20 + q-18 + q-16 + q-14 + q-12 - q-6

HOMFLY-PT Polynomial: a3z-1 + a3z - 3a5z-1 - 9a5z - 6a5z3 - a5z5 + 2a7z-1 + 4a7z + a7z3

Kauffman Polynomial: - a2 + a3z-1 - a3z - 3a4 + 9a4z2 - 6a4z4 + a4z6 + 3a5z-1 - 12a5z + 15a5z3 - 7a5z5 + a5z7 - 3a6 + 9a6z2 - 6a6z4 + a6z6 + 2a7z-1 - 4a7z + a7z3 + 7a9z - 14a9z3 + 7a9z5 - a9z7

Khovanov Homology:
trqj r = -8r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0
j = -2       11
j = -4       11
j = -6     12  
j = -8      1  
j = -10   121   
j = -12         
j = -14  11     
j = -161        
j = -181        


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, NonAlternating, 205]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, NonAlternating, 205]]
Out[4]=   
PD[X[10, 1, 11, 2], X[7, 16, 8, 17], X[18, 12, 19, 11], X[2, 19, 3, 20], 
 
>   X[3, 12, 4, 13], X[13, 21, 14, 20], X[14, 5, 15, 6], X[6, 9, 7, 10], 
 
>   X[22, 16, 9, 15], X[17, 8, 18, 1], X[21, 4, 22, 5]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -4, -5, 11, 7, -8, -2, 10}, 
 
>   {8, -1, 3, 5, -6, -7, 9, 2, -10, -3, 4, 6, -11, -9}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(17/2)    -(7/2)
-q        - q
In[7]:=
A2Invariant[L][q]
Out[7]=   
 -26    2     2     -20    -18    -16    -14    -12    -6
q    + --- + --- + q    + q    + q    + q    + q    - q
        24    22
       q     q
In[8]:=
HOMFLYPT[Link[11, NonAlternating, 205]][a, z]
Out[8]=   
 3      5      7
a    3 a    2 a     3        5        7        5  3    7  3    5  5
-- - ---- + ---- + a  z - 9 a  z + 4 a  z - 6 a  z  + a  z  - a  z
z     z      z
In[9]:=
Kauffman[Link[11, NonAlternating, 205]][a, z]
Out[9]=   
                     3      5      7
  2      4      6   a    3 a    2 a     3         5        7        9
-a  - 3 a  - 3 a  + -- + ---- + ---- - a  z - 12 a  z - 4 a  z + 7 a  z + 
                    z     z      z
 
       4  2      6  2       5  3    7  3       9  3      4  4      6  4
>   9 a  z  + 9 a  z  + 15 a  z  + a  z  - 14 a  z  - 6 a  z  - 6 a  z  - 
 
       5  5      9  5    4  6    6  6    5  7    9  7
>   7 a  z  + 7 a  z  + a  z  + a  z  + a  z  - a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
 -4    -2     1        1        1        1        1        2        1
q   + q   + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
             18  8    16  8    14  6    14  5    10  5    10  4    10  3
            q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      1       1       2      1      1
>   ----- + ----- + ----- + ---- + ----
     6  3    8  2    6  2    4      2
    q  t    q  t    q  t    q  t   q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11n205
L11n204
L11n204
L11n206
L11n206