PD Presentation: |
X8192 X20,9,21,10 X14,5,15,6 X11,18,12,19 X3,10,4,11 X12,7,13,8 X16,13,17,14 X22,17,7,18 X6,15,1,16 X4,21,5,22 X19,2,20,3 |
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... |
In[2]:= | Length[Skeleton[L]] |
Out[2]= | 2 |
In[3]:= | Show[DrawMorseLink[Link[11, NonAlternating, 176]]] |
|  |
Out[3]= | -Graphics- |
In[4]:= | PD[L = Link[11, NonAlternating, 176]] |
Out[4]= | PD[X[8, 1, 9, 2], X[20, 9, 21, 10], X[14, 5, 15, 6], X[11, 18, 12, 19],
> X[3, 10, 4, 11], X[12, 7, 13, 8], X[16, 13, 17, 14], X[22, 17, 7, 18],
> X[6, 15, 1, 16], X[4, 21, 5, 22], X[19, 2, 20, 3]] |
In[5]:= | GaussCode[L] |
Out[5]= | GaussCode[{1, 11, -5, -10, 3, -9},
> {6, -1, 2, 5, -4, -6, 7, -3, 9, -7, 8, 4, -11, -2, 10, -8}] |
In[6]:= | Jones[L][q] |
Out[6]= | -(23/2) 2 2 3 3 2 3 -(9/2) -(7/2)
-q + ----- - ----- + ----- - ----- + ----- - ----- + q - q
21/2 19/2 17/2 15/2 13/2 11/2
q q q q q q |
In[7]:= | A2Invariant[L][q] |
Out[7]= | -42 -40 -38 2 -30 2 -26 2 2 3 2 2
-q + q + q - --- - q - --- + q + --- + --- + --- + --- + --- +
32 28 24 22 20 18 16
q q q q q q q
-12
> q |
In[8]:= | HOMFLYPT[Link[11, NonAlternating, 176]][a, z] |
Out[8]= | 7 9 11
-2 a 3 a a 7 9 11 13 7 3 9 3
----- + ---- - --- - 8 a z + 2 a z + 4 a z - a z - 11 a z - 5 a z +
z z z
11 3 7 5 9 5 11 5 7 7 9 7
> 5 a z - 6 a z - 5 a z + a z - a z - a z |
In[9]:= | Kauffman[Link[11, NonAlternating, 176]][a, z] |
Out[9]= | 7 9 11
8 10 12 2 a 3 a a 7 9 13 8 2
3 a + 3 a + a - ---- - ---- - --- + 8 a z + 7 a z + a z - 5 a z +
z z z
10 2 12 2 7 3 9 3 11 3 13 3 8 4
> 3 a z + 8 a z - 11 a z - 6 a z - a z - 6 a z - a z -
10 4 12 4 7 5 9 5 11 5 13 5 8 6
> 18 a z - 17 a z + 6 a z - a z - 2 a z + 5 a z + 4 a z +
10 6 12 6 7 7 9 7 11 7 13 7 8 8
> 15 a z + 11 a z - a z + 4 a z + 4 a z - a z - a z -
10 8 12 8 9 9 11 9
> 3 a z - 2 a z - a z - a z |
In[10]:= | Kh[L][q, t] |
Out[10]= | -8 -6 1 1 1 1 2 1 3
q + q + ------ + ------ + ------ + ------ + ------ + ------ + ------ +
24 8 22 7 20 7 20 6 18 6 16 6 18 5
q t q t q t q t q t q t q t
2 1 3 1 2 1 1 2 1
> ------ + ------ + ------ + ------ + ------ + ------ + ------ + ------ + ----
16 5 16 4 14 4 12 4 14 3 12 3 12 2 10 2 8
q t q t q t q t q t q t q t q t q t |