© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11n174
L11n174
L11n176
L11n176
L11n175
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11n175

Visit L11n175's page at Knotilus!

Acknowledgement

L11n175 as Morse Link
DrawMorseLink

PD Presentation: X8192 X9,21,10,20 X14,5,15,6 X18,12,19,11 X3,10,4,11 X12,7,13,8 X16,13,17,14 X22,17,7,18 X6,15,1,16 X4,21,5,22 X19,2,20,3

Gauss Code: {{1, 11, -5, -10, 3, -9}, {6, -1, -2, 5, 4, -6, 7, -3, 9, -7, 8, -4, -11, 2, 10, -8}}

Jones Polynomial: q-21/2 - 4q-19/2 + 6q-17/2 - 9q-15/2 + 11q-13/2 - 11q-11/2 + 10q-9/2 - 8q-7/2 + 4q-5/2 - 2q-3/2

A2 (sl(3)) Invariant: - q-32 + 2q-30 + q-28 + 4q-24 - q-22 - q-18 - 2q-16 + 2q-14 - q-12 + 3q-10 + 2q-8 - q-6 + 2q-4

HOMFLY-PT Polynomial: - a3z-1 - 3a3z - 2a3z3 + 2a5z-1 + a5z + a5z3 + a5z5 - 2a7z-1 - a7z + a7z3 + a7z5 + a9z-1 - a9z3

Kauffman Polynomial: - a3z-1 + 4a3z - 3a3z3 + a4z2 - 2a4z4 - a4z6 - 2a5z-1 + 7a5z - 10a5z3 + 5a5z5 - 3a5z7 - a6 + 9a6z2 - 16a6z4 + 10a6z6 - 4a6z8 - 2a7z-1 + 9a7z - 17a7z3 + 12a7z5 - a7z7 - 2a7z9 + 11a8z2 - 27a8z4 + 27a8z6 - 9a8z8 - a9z-1 + 5a9z - 17a9z3 + 19a9z5 - 2a9z7 - 2a9z9 + 3a10z2 - 11a10z4 + 15a10z6 - 5a10z8 - a11z - 7a11z3 + 12a11z5 - 4a11z7 + 2a12z4 - a12z6

Khovanov Homology:
trqj r = -9r = -8r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0
j = -2         2
j = -4        31
j = -6       51 
j = -8      53  
j = -10     65   
j = -12    55    
j = -14   46     
j = -16  36      
j = -18 13       
j = -20 3        
j = -221         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, NonAlternating, 175]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, NonAlternating, 175]]
Out[4]=   
PD[X[8, 1, 9, 2], X[9, 21, 10, 20], X[14, 5, 15, 6], X[18, 12, 19, 11], 
 
>   X[3, 10, 4, 11], X[12, 7, 13, 8], X[16, 13, 17, 14], X[22, 17, 7, 18], 
 
>   X[6, 15, 1, 16], X[4, 21, 5, 22], X[19, 2, 20, 3]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, 11, -5, -10, 3, -9}, 
 
>   {6, -1, -2, 5, 4, -6, 7, -3, 9, -7, 8, -4, -11, 2, 10, -8}]
In[6]:=
Jones[L][q]
Out[6]=   
 -(21/2)     4       6       9      11      11      10     8      4      2
q        - ----- + ----- - ----- + ----- - ----- + ---- - ---- + ---- - ----
            19/2    17/2    15/2    13/2    11/2    9/2    7/2    5/2    3/2
           q       q       q       q       q       q      q      q      q
In[7]:=
A2Invariant[L][q]
Out[7]=   
  -32    2     -28    4     -22    -18    2     2     -12    3    2     -6   2
-q    + --- + q    + --- - q    - q    - --- + --- - q    + --- + -- - q   + --
         30           24                  16    14           10    8          4
        q            q                   q     q            q     q          q
In[8]:=
HOMFLYPT[Link[11, NonAlternating, 175]][a, z]
Out[8]=   
   3       5      7    9
  a     2 a    2 a    a       3      5      7        3  3    5  3    7  3
-(--) + ---- - ---- + -- - 3 a  z + a  z - a  z - 2 a  z  + a  z  + a  z  - 
  z      z      z     z
 
     9  3    5  5    7  5
>   a  z  + a  z  + a  z
In[9]:=
Kauffman[Link[11, NonAlternating, 175]][a, z]
Out[9]=   
       3      5      7    9
  6   a    2 a    2 a    a       3        5        7        9      11
-a  - -- - ---- - ---- - -- + 4 a  z + 7 a  z + 9 a  z + 5 a  z - a   z + 
      z     z      z     z
 
     4  2      6  2       8  2      10  2      3  3       5  3       7  3
>   a  z  + 9 a  z  + 11 a  z  + 3 a   z  - 3 a  z  - 10 a  z  - 17 a  z  - 
 
        9  3      11  3      4  4       6  4       8  4       10  4
>   17 a  z  - 7 a   z  - 2 a  z  - 16 a  z  - 27 a  z  - 11 a   z  + 
 
       12  4      5  5       7  5       9  5       11  5    4  6       6  6
>   2 a   z  + 5 a  z  + 12 a  z  + 19 a  z  + 12 a   z  - a  z  + 10 a  z  + 
 
        8  6       10  6    12  6      5  7    7  7      9  7      11  7
>   27 a  z  + 15 a   z  - a   z  - 3 a  z  - a  z  - 2 a  z  - 4 a   z  - 
 
       6  8      8  8      10  8      7  9      9  9
>   4 a  z  - 9 a  z  - 5 a   z  - 2 a  z  - 2 a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
 -4   2      1        3        1        3        3        6        4
q   + -- + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
       2    22  9    20  8    18  8    18  7    16  7    16  6    14  6
      q    q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      6        5        5        6        5        5       3       5      1
>   ------ + ------ + ------ + ------ + ------ + ----- + ----- + ----- + ---- + 
     14  5    12  5    12  4    10  4    10  3    8  3    8  2    6  2    6
    q   t    q   t    q   t    q   t    q   t    q  t    q  t    q  t    q  t
 
     3
>   ----
     4
    q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11n175
L11n174
L11n174
L11n176
L11n176