© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11n158
L11n158
L11n160
L11n160
L11n159
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11n159

Visit L11n159's page at Knotilus!

Acknowledgement

L11n159 as Morse Link
DrawMorseLink

PD Presentation: X8192 X7,17,8,16 X10,4,11,3 X2,15,3,16 X14,10,15,9 X11,19,12,18 X5,13,6,12 X21,1,22,6 X20,14,21,13 X17,7,18,22 X4,20,5,19

Gauss Code: {{1, -4, 3, -11, -7, 8}, {-2, -1, 5, -3, -6, 7, 9, -5, 4, 2, -10, 6, 11, -9, -8, 10}}

Jones Polynomial: - q1/2 + 2q3/2 - 3q5/2 + 2q7/2 - 4q9/2 + 2q11/2 - 2q13/2 + 2q15/2

A2 (sl(3)) Invariant: q2 + q8 + 2q10 + 3q12 + 2q14 + 4q16 + q18 + q20 - q22 - 2q24 - 2q26 - 2q28 + q30

HOMFLY-PT Polynomial: a-9z-1 - a-9z - 2a-7z-1 + a-7z + 4a-7z3 + a-7z5 - 2a-5z - 6a-5z3 - 5a-5z5 - a-5z7 + a-3z-1 + 3a-3z + 4a-3z3 + a-3z5

Kauffman Polynomial: - 2a-10 + a-10z2 + a-9z-1 + a-9z - 5a-8 + 7a-8z2 - 7a-8z4 + 5a-8z6 - a-8z8 + 2a-7z-1 + 3a-7z - 5a-7z3 - a-7z5 + 4a-7z7 - a-7z9 - 3a-6 + 8a-6z2 - 19a-6z4 + 15a-6z6 - 3a-6z8 + 6a-5z - 12a-5z3 + 4a-5z5 + 3a-5z7 - a-5z9 + a-4 + 2a-4z2 - 12a-4z4 + 10a-4z6 - 2a-4z8 - a-3z-1 + 4a-3z - 7a-3z3 + 5a-3z5 - a-3z7

Khovanov Homology:
trqj r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5
j = 16       2
j = 14      11
j = 12     22 
j = 10    211 
j = 8   13   
j = 6  221   
j = 4 12     
j = 2 1      
j = 01       


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, NonAlternating, 159]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, NonAlternating, 159]]
Out[4]=   
PD[X[8, 1, 9, 2], X[7, 17, 8, 16], X[10, 4, 11, 3], X[2, 15, 3, 16], 
 
>   X[14, 10, 15, 9], X[11, 19, 12, 18], X[5, 13, 6, 12], X[21, 1, 22, 6], 
 
>   X[20, 14, 21, 13], X[17, 7, 18, 22], X[4, 20, 5, 19]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -4, 3, -11, -7, 8}, 
 
>   {-2, -1, 5, -3, -6, 7, 9, -5, 4, 2, -10, 6, 11, -9, -8, 10}]
In[6]:=
Jones[L][q]
Out[6]=   
              3/2      5/2      7/2      9/2      11/2      13/2      15/2
-Sqrt[q] + 2 q    - 3 q    + 2 q    - 4 q    + 2 q     - 2 q     + 2 q
In[7]:=
A2Invariant[L][q]
Out[7]=   
 2    8      10      12      14      16    18    20    22      24      26
q  + q  + 2 q   + 3 q   + 2 q   + 4 q   + q   + q   - q   - 2 q   - 2 q   - 
 
       28    30
>   2 q   + q
In[8]:=
HOMFLYPT[Link[11, NonAlternating, 159]][a, z]
Out[8]=   
                                              3      3      3    5      5
 1      2      1     z    z    2 z   3 z   4 z    6 z    4 z    z    5 z
---- - ---- + ---- - -- + -- - --- + --- + ---- - ---- + ---- + -- - ---- + 
 9      7      3      9    7    5     3      7      5      3     7     5
a  z   a  z   a  z   a    a    a     a      a      a      a     a     a
 
     5    7
    z    z
>   -- - --
     3    5
    a    a
In[9]:=
Kauffman[Link[11, NonAlternating, 159]][a, z]
Out[9]=   
                                                                   2       2
-2    5    3     -4    1      2      1     z    3 z   6 z   4 z   z     7 z
--- - -- - -- + a   + ---- + ---- - ---- + -- + --- + --- + --- + --- + ---- + 
 10    8    6          9      7      3      9    7     5     3     10     8
a     a    a          a  z   a  z   a  z   a    a     a     a     a      a
 
       2      2      3       3      3      4       4       4    5      5
    8 z    2 z    5 z    12 z    7 z    7 z    19 z    12 z    z    4 z
>   ---- + ---- - ---- - ----- - ---- - ---- - ----- - ----- - -- + ---- + 
      6      4      7      5       3      8      6       4      7     5
     a      a      a      a       a      a      a       a      a     a
 
       5      6       6       6      7      7    7    8      8      8    9    9
    5 z    5 z    15 z    10 z    4 z    3 z    z    z    3 z    2 z    z    z
>   ---- + ---- + ----- + ----- + ---- + ---- - -- - -- - ---- - ---- - -- - --
      3      8      6       4       7      5     3    8     6      4     7    5
     a      a      a       a       a      a     a    a     a      a     a    a
In[10]:=
Kh[L][q, t]
Out[10]=   
                     2    4
   4      6    -2   q    q       6      8      6  2      8  2      10  2
2 q  + 2 q  + t   + -- + -- + 2 q  t + q  t + q  t  + 3 q  t  + 2 q   t  + 
                    t    t
 
     10  3      12  3    10  4      12  4    14  4    14  5      16  5
>   q   t  + 2 q   t  + q   t  + 2 q   t  + q   t  + q   t  + 2 q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11n159
L11n158
L11n158
L11n160
L11n160