PD Presentation: |
X8192 X18,11,19,12 X10,4,11,3 X2,17,3,18 X12,5,13,6 X6718 X16,10,17,9 X13,20,14,21 X15,22,16,7 X4,20,5,19 X21,14,22,15 |
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... |
In[2]:= | Length[Skeleton[L]] |
Out[2]= | 2 |
In[3]:= | Show[DrawMorseLink[Link[11, NonAlternating, 137]]] |
|  |
Out[3]= | -Graphics- |
In[4]:= | PD[L = Link[11, NonAlternating, 137]] |
Out[4]= | PD[X[8, 1, 9, 2], X[18, 11, 19, 12], X[10, 4, 11, 3], X[2, 17, 3, 18],
> X[12, 5, 13, 6], X[6, 7, 1, 8], X[16, 10, 17, 9], X[13, 20, 14, 21],
> X[15, 22, 16, 7], X[4, 20, 5, 19], X[21, 14, 22, 15]] |
In[5]:= | GaussCode[L] |
Out[5]= | GaussCode[{1, -4, 3, -10, 5, -6},
> {6, -1, 7, -3, 2, -5, -8, 11, -9, -7, 4, -2, 10, 8, -11, 9}] |
In[6]:= | Jones[L][q] |
Out[6]= | -(19/2) 4 7 10 12 12 11 7 5 1
-q + ----- - ----- + ----- - ----- + ---- - ---- + ---- - ---- + -------
17/2 15/2 13/2 11/2 9/2 7/2 5/2 3/2 Sqrt[q]
q q q q q q q q |
In[7]:= | A2Invariant[L][q] |
Out[7]= | -28 2 -24 2 2 2 2 4 3 4 3 -2
q - --- + q - --- - --- + --- - --- + --- + --- + -- + -- - q
26 22 20 18 16 14 10 8 4
q q q q q q q q q |
In[8]:= | HOMFLYPT[Link[11, NonAlternating, 137]][a, z] |
Out[8]= | 3 5 7
-2 a 3 a a 3 5 3 3 5 3 7 3 3 5
----- + ---- - -- - 3 a z + 2 a z + a z - 4 a z + 2 a z + a z -
z z z
5 5 7 5 5 7
> 4 a z + a z - a z |
In[9]:= | Kauffman[Link[11, NonAlternating, 137]][a, z] |
Out[9]= | 3 5 7
4 6 8 2 a 3 a a 3 5 7 4 2
3 a + 3 a + a - ---- - ---- - -- + 3 a z + 4 a z + a z - 4 a z -
z z z
6 2 8 2 10 2 3 3 5 3 7 3 9 3
> 9 a z - 7 a z - 2 a z + 4 a z + 2 a z - 7 a z - 4 a z +
11 3 2 4 4 4 6 4 8 4 10 4 3 5
> a z - a z + 4 a z + 8 a z + 10 a z + 7 a z - 5 a z -
5 5 7 5 9 5 11 5 4 6 6 6 8 6
> a z + 16 a z + 11 a z - a z - 3 a z + 2 a z + a z -
10 6 5 7 7 7 9 7 4 8 6 8 8 8
> 4 a z - 2 a z - 8 a z - 6 a z - a z - 5 a z - 4 a z -
5 9 7 9
> a z - a z |
In[10]:= | Kh[L][q, t] |
Out[10]= | 2 4 1 3 1 4 3 6 4
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + ------ +
4 2 20 8 18 7 16 7 16 6 14 6 14 5 12 5
q q q t q t q t q t q t q t q t
6 6 6 6 5 7 3 4
> ------ + ------ + ------ + ----- + ----- + ----- + ---- + ---- + t
12 4 10 4 10 3 8 3 8 2 6 2 6 4
q t q t q t q t q t q t q t q t |