© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11n134
L11n134
L11n136
L11n136
L11n135
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11n135

Visit L11n135's page at Knotilus!

Acknowledgement

L11n135 as Morse Link
DrawMorseLink

PD Presentation: X8192 X11,19,12,18 X3,10,4,11 X17,3,18,2 X12,5,13,6 X6718 X16,10,17,9 X20,14,21,13 X22,16,7,15 X4,20,5,19 X14,22,15,21

Gauss Code: {{1, 4, -3, -10, 5, -6}, {6, -1, 7, 3, -2, -5, 8, -11, 9, -7, -4, 2, 10, -8, 11, -9}}

Jones Polynomial: - q-3/2 + q-1/2 - 3q1/2 + 3q3/2 - 4q5/2 + 3q7/2 - 3q9/2 + 2q11/2 - q13/2 + q15/2

A2 (sl(3)) Invariant: q-4 + q-2 + 3 + 2q2 + 2q4 + 2q6 + q8 + 2q10 - q16 - 2q18 - q20 - q22

HOMFLY-PT Polynomial: 2a-5z-1 + 7a-5z + 5a-5z3 + a-5z5 - 5a-3z-1 - 16a-3z - 17a-3z3 - 7a-3z5 - a-3z7 + 3a-1z-1 + 8a-1z + 5a-1z3 + a-1z5

Kauffman Polynomial: a-8 - 6a-8z2 + 5a-8z4 - a-8z6 - 3a-7z3 + 4a-7z5 - a-7z7 + 2a-6z2 - 4a-6z4 + 4a-6z6 - a-6z8 + 2a-5z-1 - 9a-5z + 19a-5z3 - 15a-5z5 + 6a-5z7 - a-5z9 - 5a-4 + 20a-4z2 - 23a-4z4 + 11a-4z6 - 2a-4z8 + 5a-3z-1 - 20a-3z + 29a-3z3 - 21a-3z5 + 7a-3z7 - a-3z9 - 5a-2 + 13a-2z2 - 15a-2z4 + 6a-2z6 - a-2z8 + 3a-1z-1 - 9a-1z + 6a-1z3 - 2a-1z5 + z2 - z4 + 2az - az3

Khovanov Homology:
trqj r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7
j = 16         1
j = 14          
j = 12       21 
j = 10      1   
j = 8     22   
j = 6    21    
j = 4   12     
j = 2  22      
j = 0  2       
j = -211        
j = -41         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, NonAlternating, 135]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, NonAlternating, 135]]
Out[4]=   
PD[X[8, 1, 9, 2], X[11, 19, 12, 18], X[3, 10, 4, 11], X[17, 3, 18, 2], 
 
>   X[12, 5, 13, 6], X[6, 7, 1, 8], X[16, 10, 17, 9], X[20, 14, 21, 13], 
 
>   X[22, 16, 7, 15], X[4, 20, 5, 19], X[14, 22, 15, 21]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, 4, -3, -10, 5, -6}, 
 
>   {6, -1, 7, 3, -2, -5, 8, -11, 9, -7, -4, 2, 10, -8, 11, -9}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(3/2)      1                     3/2      5/2      7/2      9/2      11/2
-q       + ------- - 3 Sqrt[q] + 3 q    - 4 q    + 3 q    - 3 q    + 2 q     - 
           Sqrt[q]
 
     13/2    15/2
>   q     + q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -4    -2      2      4      6    8      10    16      18    20    22
3 + q   + q   + 2 q  + 2 q  + 2 q  + q  + 2 q   - q   - 2 q   - q   - q
In[8]:=
HOMFLYPT[Link[11, NonAlternating, 135]][a, z]
Out[8]=   
                                          3       3      3    5      5    5    7
 2      5      3    7 z   16 z   8 z   5 z    17 z    5 z    z    7 z    z    z
---- - ---- + --- + --- - ---- + --- + ---- - ----- + ---- + -- - ---- + -- - --
 5      3     a z    5      3     a      5      3      a      5     3    a     3
a  z   a  z         a      a            a      a             a     a          a
In[9]:=
Kauffman[Link[11, NonAlternating, 135]][a, z]
Out[9]=   
                                                                       2
 -8   5    5     2      5      3    9 z   20 z   9 z            2   6 z
a   - -- - -- + ---- + ---- + --- - --- - ---- - --- + 2 a z + z  - ---- + 
       4    2    5      3     a z    5      3     a                   8
      a    a    a  z   a  z         a      a                         a
 
       2       2       2      3       3       3      3                  4
    2 z    20 z    13 z    3 z    19 z    29 z    6 z       3    4   5 z
>   ---- + ----- + ----- - ---- + ----- + ----- + ---- - a z  - z  + ---- - 
      6      4       2       7      5       3      a                   8
     a      a       a       a      a       a                          a
 
       4       4       4      5       5       5      5    6      6       6
    4 z    23 z    15 z    4 z    15 z    21 z    2 z    z    4 z    11 z
>   ---- - ----- - ----- + ---- - ----- - ----- - ---- - -- + ---- + ----- + 
      6      4       2       7      5       3      a      8     6      4
     a      a       a       a      a       a             a     a      a
 
       6    7      7      7    8      8    8    9    9
    6 z    z    6 z    7 z    z    2 z    z    z    z
>   ---- - -- + ---- + ---- - -- - ---- - -- - -- - --
      2     7     5      3     6     4     2    5    3
     a     a     a      a     a     a     a    a    a
In[10]:=
Kh[L][q, t]
Out[10]=   
       2     1       1      1        2      4        4  2      6  2    6  3
2 + 2 q  + ----- + ----- + ---- + 2 q  t + q  t + 2 q  t  + 2 q  t  + q  t  + 
            4  2    2  2    2
           q  t    q  t    q  t
 
       8  3      8  4    10  4      12  5    12  6    16  7
>   2 q  t  + 2 q  t  + q   t  + 2 q   t  + q   t  + q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11n135
L11n134
L11n134
L11n136
L11n136