© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11n133
L11n133
L11n135
L11n135
L11n134
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11n134

Visit L11n134's page at Knotilus!

Acknowledgement

L11n134 as Morse Link
DrawMorseLink

PD Presentation: X8192 X18,11,19,12 X3,10,4,11 X17,3,18,2 X12,5,13,6 X6718 X9,16,10,17 X20,14,21,13 X22,16,7,15 X4,20,5,19 X14,22,15,21

Gauss Code: {{1, 4, -3, -10, 5, -6}, {6, -1, -7, 3, 2, -5, 8, -11, 9, 7, -4, -2, 10, -8, 11, -9}}

Jones Polynomial: - q-11/2 + 2q-9/2 - 3q-7/2 + 4q-5/2 - 5q-3/2 + 4q-1/2 - 5q1/2 + 3q3/2 - 2q5/2 + q7/2

A2 (sl(3)) Invariant: q-16 + q-12 + q-6 + 3q-2 + 2 + 2q2 + q4 - q6 - q10

HOMFLY-PT Polynomial: 4a-1z + 4a-1z3 + a-1z5 - az-1 - 9az - 12az3 - 6az5 - az7 + a3z-1 + 4a3z + 4a3z3 + a3z5

Kauffman Polynomial: - a-4z2 - 2a-3z3 + 2a-2z2 - 3a-2z4 - 6a-1z + 11a-1z3 - 5a-1z5 + 4z2 - 2z4 + 2z6 - z8 + az-1 - 11az + 19az3 - 10az5 + 4az7 - az9 - a2 + 6a2z2 - 13a2z4 + 12a2z6 - 3a2z8 + a3z-1 - 3a3z - a3z3 + 3a3z7 - a3z9 + 5a4z2 - 14a4z4 + 10a4z6 - 2a4z8 + 2a5z - 7a5z3 + 5a5z5 - a5z7

Khovanov Homology:
trqj r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3
j = 8         1
j = 6        1 
j = 4       21 
j = 2      31  
j = 0     23   
j = -2    32    
j = -4   23     
j = -6  12      
j = -8 12       
j = -10 1        
j = -121         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, NonAlternating, 134]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, NonAlternating, 134]]
Out[4]=   
PD[X[8, 1, 9, 2], X[18, 11, 19, 12], X[3, 10, 4, 11], X[17, 3, 18, 2], 
 
>   X[12, 5, 13, 6], X[6, 7, 1, 8], X[9, 16, 10, 17], X[20, 14, 21, 13], 
 
>   X[22, 16, 7, 15], X[4, 20, 5, 19], X[14, 22, 15, 21]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, 4, -3, -10, 5, -6}, 
 
>   {6, -1, -7, 3, 2, -5, 8, -11, 9, 7, -4, -2, 10, -8, 11, -9}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(11/2)    2      3      4      5        4                     3/2      5/2
-q        + ---- - ---- + ---- - ---- + ------- - 5 Sqrt[q] + 3 q    - 2 q    + 
             9/2    7/2    5/2    3/2   Sqrt[q]
            q      q      q      q
 
     7/2
>   q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -16    -12    -6   3       2    4    6    10
2 + q    + q    + q   + -- + 2 q  + q  - q  - q
                         2
                        q
In[8]:=
HOMFLYPT[Link[11, NonAlternating, 134]][a, z]
Out[8]=   
        3                             3                        5
  a    a    4 z              3     4 z          3      3  3   z         5
-(-) + -- + --- - 9 a z + 4 a  z + ---- - 12 a z  + 4 a  z  + -- - 6 a z  + 
  z    z     a                      a                         a
 
     3  5      7
>   a  z  - a z
In[9]:=
Kauffman[Link[11, NonAlternating, 134]][a, z]
Out[9]=   
           3                                            2      2
  2   a   a    6 z               3        5        2   z    2 z       2  2
-a  + - + -- - --- - 11 a z - 3 a  z + 2 a  z + 4 z  - -- + ---- + 6 a  z  + 
      z   z     a                                       4     2
                                                       a     a
 
                 3       3                                         4
       4  2   2 z    11 z          3    3  3      5  3      4   3 z
>   5 a  z  - ---- + ----- + 19 a z  - a  z  - 7 a  z  - 2 z  - ---- - 
                3      a                                          2
               a                                                 a
 
                             5
        2  4       4  4   5 z          5      5  5      6       2  6
>   13 a  z  - 14 a  z  - ---- - 10 a z  + 5 a  z  + 2 z  + 12 a  z  + 
                           a
 
        4  6        7      3  7    5  7    8      2  8      4  8      9    3  9
>   10 a  z  + 4 a z  + 3 a  z  - a  z  - z  - 3 a  z  - 2 a  z  - a z  - a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
       2     1        1        1       2       1       2       2       3
3 + 3 q  + ------ + ------ + ----- + ----- + ----- + ----- + ----- + ----- + 
            12  6    10  5    8  5    8  4    6  4    6  3    4  3    4  2
           q   t    q   t    q  t    q  t    q  t    q  t    q  t    q  t
 
      3     2    2      2        4      4  2    6  2    8  3
>   ----- + - + ---- + q  t + 2 q  t + q  t  + q  t  + q  t
     2  2   t    2
    q  t        q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11n134
L11n133
L11n133
L11n135
L11n135