© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11n130
L11n130
L11n132
L11n132
L11n131
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11n131

Visit L11n131's page at Knotilus!

Acknowledgement

L11n131 as Morse Link
DrawMorseLink

PD Presentation: X8192 X11,19,12,18 X3,10,4,11 X17,3,18,2 X5,13,6,12 X6718 X16,10,17,9 X20,14,21,13 X22,16,7,15 X19,4,20,5 X14,22,15,21

Gauss Code: {{1, 4, -3, 10, -5, -6}, {6, -1, 7, 3, -2, 5, 8, -11, 9, -7, -4, 2, -10, -8, 11, -9}}

Jones Polynomial: - q-3/2 + 2q-1/2 - 5q1/2 + 5q3/2 - 7q5/2 + 6q7/2 - 5q9/2 + 4q11/2 - 2q13/2 + q15/2

A2 (sl(3)) Invariant: q-4 + 3 + 2q2 + 3q4 + 4q6 + q8 + 2q10 - 2q12 - q14 - q16 - 2q18 - q22

HOMFLY-PT Polynomial: 2a-5z-1 + 5a-5z + 4a-5z3 + a-5z5 - 5a-3z-1 - 12a-3z - 13a-3z3 - 6a-3z5 - a-3z7 + 3a-1z-1 + 6a-1z + 4a-1z3 + a-1z5

Kauffman Polynomial: a-8 - 4a-8z2 + 4a-8z4 - a-8z6 - 5a-7z3 + 7a-7z5 - 2a-7z7 - 3a-6z4 + 6a-6z6 - 2a-6z8 + 2a-5z-1 - 6a-5z + 7a-5z3 - 2a-5z5 + 2a-5z7 - a-5z9 - 5a-4 + 14a-4z2 - 15a-4z4 + 10a-4z6 - 3a-4z8 + 5a-3z-1 - 15a-3z + 20a-3z3 - 13a-3z5 + 4a-3z7 - a-3z9 - 5a-2 + 11a-2z2 - 10a-2z4 + 3a-2z6 - a-2z8 + 3a-1z-1 - 8a-1z + 7a-1z3 - 4a-1z5 + z2 - 2z4 + az - az3

Khovanov Homology:
trqj r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7
j = 16         1
j = 14        1 
j = 12       31 
j = 10      21  
j = 8     43   
j = 6    32    
j = 4   24     
j = 2  33      
j = 0  3       
j = -212        
j = -41         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, NonAlternating, 131]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, NonAlternating, 131]]
Out[4]=   
PD[X[8, 1, 9, 2], X[11, 19, 12, 18], X[3, 10, 4, 11], X[17, 3, 18, 2], 
 
>   X[5, 13, 6, 12], X[6, 7, 1, 8], X[16, 10, 17, 9], X[20, 14, 21, 13], 
 
>   X[22, 16, 7, 15], X[19, 4, 20, 5], X[14, 22, 15, 21]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, 4, -3, 10, -5, -6}, 
 
>   {6, -1, 7, 3, -2, 5, 8, -11, 9, -7, -4, 2, -10, -8, 11, -9}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(3/2)      2                     3/2      5/2      7/2      9/2      11/2
-q       + ------- - 5 Sqrt[q] + 5 q    - 7 q    + 6 q    - 5 q    + 4 q     - 
           Sqrt[q]
 
       13/2    15/2
>   2 q     + q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -4      2      4      6    8      10      12    14    16      18    22
3 + q   + 2 q  + 3 q  + 4 q  + q  + 2 q   - 2 q   - q   - q   - 2 q   - q
In[8]:=
HOMFLYPT[Link[11, NonAlternating, 131]][a, z]
Out[8]=   
                                          3       3      3    5      5    5    7
 2      5      3    5 z   12 z   6 z   4 z    13 z    4 z    z    6 z    z    z
---- - ---- + --- + --- - ---- + --- + ---- - ----- + ---- + -- - ---- + -- - --
 5      3     a z    5      3     a      5      3      a      5     3    a     3
a  z   a  z         a      a            a      a             a     a          a
In[9]:=
Kauffman[Link[11, NonAlternating, 131]][a, z]
Out[9]=   
                                                                     2
 -8   5    5     2      5      3    6 z   15 z   8 z          2   4 z
a   - -- - -- + ---- + ---- + --- - --- - ---- - --- + a z + z  - ---- + 
       4    2    5      3     a z    5      3     a                 8
      a    a    a  z   a  z         a      a                       a
 
        2       2      3      3       3      3                    4      4
    14 z    11 z    5 z    7 z    20 z    7 z       3      4   4 z    3 z
>   ----- + ----- - ---- + ---- + ----- + ---- - a z  - 2 z  + ---- - ---- - 
      4       2       7      5      3      a                     8      6
     a       a       a      a      a                            a      a
 
        4       4      5      5       5      5    6      6       6      6
    15 z    10 z    7 z    2 z    13 z    4 z    z    6 z    10 z    3 z
>   ----- - ----- + ---- - ---- - ----- - ---- - -- + ---- + ----- + ---- - 
      4       2       7      5      3      a      8     6      4       2
     a       a       a      a      a             a     a      a       a
 
       7      7      7      8      8    8    9    9
    2 z    2 z    4 z    2 z    3 z    z    z    z
>   ---- + ---- + ---- - ---- - ---- - -- - -- - --
      7      5      3      6      4     2    5    3
     a      a      a      a      a     a    a    a
In[10]:=
Kh[L][q, t]
Out[10]=   
       2     1       1      2        2        4        4  2      6  2
3 + 3 q  + ----- + ----- + ---- + 3 q  t + 2 q  t + 4 q  t  + 3 q  t  + 
            4  2    2  2    2
           q  t    q  t    q  t
 
       6  3      8  3      8  4      10  4    10  5      12  5    12  6
>   2 q  t  + 4 q  t  + 3 q  t  + 2 q   t  + q   t  + 3 q   t  + q   t  + 
 
     14  6    16  7
>   q   t  + q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11n131
L11n130
L11n130
L11n132
L11n132