© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11n120
L11n120
L11n122
L11n122
L11n121
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11n121

Visit L11n121's page at Knotilus!

Acknowledgement

L11n121 as Morse Link
DrawMorseLink

PD Presentation: X6172 X14,3,15,4 X16,10,17,9 X11,21,12,20 X21,9,22,8 X7,19,8,18 X19,13,20,12 X10,16,11,15 X17,5,18,22 X2536 X4,13,1,14

Gauss Code: {{1, -10, 2, -11}, {10, -1, -6, 5, 3, -8, -4, 7, 11, -2, 8, -3, -9, 6, -7, 4, -5, 9}}

Jones Polynomial: - q-5/2 - 3q1/2 + 3q3/2 - 4q5/2 + 4q7/2 - 3q9/2 + 3q11/2 - q13/2

A2 (sl(3)) Invariant: q-8 + 2q-6 + 3q-4 + 2q-2 + 4 + 2q2 + q4 + q6 - 2q8 - q10 - 3q12 - q14 - q18 + q20

HOMFLY-PT Polynomial: - a-5z - a-5z3 + 2a-3z-1 + 6a-3z + 4a-3z3 + a-3z5 - 5a-1z-1 - 11a-1z - 7a-1z3 - a-1z5 + 3az-1 + 4az + az3

Kauffman Polynomial: 2a-7z3 - a-7z5 - a-6 - 4a-6z2 + 9a-6z4 - 3a-6z6 + a-5z - 2a-5z3 + 5a-5z5 - 2a-5z7 - 5a-4z2 + 10a-4z4 - 4a-4z6 - 2a-3z-1 + 5a-3z - 4a-3z3 + 2a-3z5 - a-3z7 + 5a-2 - 10a-2z2 + 4a-2z4 - a-2z6 - 5a-1z-1 + 14a-1z - 14a-1z3 + 3a-1z5 + 5 - 9z2 + 3z4 - 3az-1 + 10az - 14az3 + 7az5 - az7

Khovanov Homology:
trqj r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6
j = 14          1
j = 12         2 
j = 10        11 
j = 8       32  
j = 6     121   
j = 4     23    
j = 2   132     
j = 0    3      
j = -2  11       
j = -41          
j = -61          


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, NonAlternating, 121]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, NonAlternating, 121]]
Out[4]=   
PD[X[6, 1, 7, 2], X[14, 3, 15, 4], X[16, 10, 17, 9], X[11, 21, 12, 20], 
 
>   X[21, 9, 22, 8], X[7, 19, 8, 18], X[19, 13, 20, 12], X[10, 16, 11, 15], 
 
>   X[17, 5, 18, 22], X[2, 5, 3, 6], X[4, 13, 1, 14]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -10, 2, -11}, {10, -1, -6, 5, 3, -8, -4, 7, 11, -2, 8, -3, -9, 6, 
 
>    -7, 4, -5, 9}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(5/2)                  3/2      5/2      7/2      9/2      11/2    13/2
-q       - 3 Sqrt[q] + 3 q    - 4 q    + 4 q    - 3 q    + 3 q     - q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -8   2    3    2       2    4    6      8    10      12    14    18    20
4 + q   + -- + -- + -- + 2 q  + q  + q  - 2 q  - q   - 3 q   - q   - q   + q
           6    4    2
          q    q    q
In[8]:=
HOMFLYPT[Link[11, NonAlternating, 121]][a, z]
Out[8]=   
                                              3      3      3           5    5
 2      5    3 a   z    6 z   11 z           z    4 z    7 z       3   z    z
---- - --- + --- - -- + --- - ---- + 4 a z - -- + ---- - ---- + a z  + -- - --
 3     a z    z     5    3     a              5     3     a             3   a
a  z               a    a                    a     a                   a
In[9]:=
Kauffman[Link[11, NonAlternating, 121]][a, z]
Out[9]=   
                                                                       2
     -6   5     2      5    3 a   z    5 z   14 z               2   4 z
5 - a   + -- - ---- - --- - --- + -- + --- + ---- + 10 a z - 9 z  - ---- - 
           2    3     a z    z     5    3     a                       6
          a    a  z               a    a                             a
 
       2       2      3      3      3       3                       4       4
    5 z    10 z    2 z    2 z    4 z    14 z          3      4   9 z    10 z
>   ---- - ----- + ---- - ---- - ---- - ----- - 14 a z  + 3 z  + ---- + ----- + 
      4      2       7      5      3      a                        6      4
     a      a       a      a      a                               a      a
 
       4    5      5      5      5               6      6    6      7    7
    4 z    z    5 z    2 z    3 z         5   3 z    4 z    z    2 z    z
>   ---- - -- + ---- + ---- + ---- + 7 a z  - ---- - ---- - -- - ---- - -- - 
      2     7     5      3     a                6      4     2     5     3
     a     a     a      a                      a      a     a     a     a
 
       7
>   a z
In[10]:=
Kh[L][q, t]
Out[10]=   
                                           2
       2     1       1       1      1     q       2        4      6
3 + 3 q  + ----- + ----- + ----- + ---- + -- + 2 q  t + 2 q  t + q  t + 
            6  4    4  4    2  2    2     t
           q  t    q  t    q  t    q  t
 
       4  2      6  2    6  3      8  3      8  4    10  4    10  5
>   3 q  t  + 2 q  t  + q  t  + 3 q  t  + 2 q  t  + q   t  + q   t  + 
 
       12  5    14  6
>   2 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11n121
L11n120
L11n120
L11n122
L11n122