© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11n119
L11n119
L11n121
L11n121
L11n120
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11n120

Visit L11n120's page at Knotilus!

Acknowledgement

L11n120 as Morse Link
DrawMorseLink

PD Presentation: X6172 X14,3,15,4 X9,16,10,17 X11,21,12,20 X21,9,22,8 X7,19,8,18 X19,13,20,12 X15,10,16,11 X17,5,18,22 X2536 X4,13,1,14

Gauss Code: {{1, -10, 2, -11}, {10, -1, -6, 5, -3, 8, -4, 7, 11, -2, -8, 3, -9, 6, -7, 4, -5, 9}}

Jones Polynomial: - q-11/2 + 2q-9/2 - 3q-7/2 + 2q-5/2 - 2q-3/2 - q3/2 + 2q5/2 - 2q7/2 + q9/2

A2 (sl(3)) Invariant: q-18 + q-16 + q-12 + 2q-8 + q-6 + q-4 + 2q-2 + 2q2 - q10 - q14

HOMFLY-PT Polynomial: a-3z-1 + 2a-3z + a-3z3 - 3a-1z-1 - 7a-1z - 5a-1z3 - a-1z5 + 3az-1 + 7az + 5az3 + az5 - 2a3z-1 - 5a3z - 2a3z3 + a5z-1 + a5z

Kauffman Polynomial: a-4 - 3a-4z2 + 4a-4z4 - a-4z6 - a-3z-1 + 3a-3z - 8a-3z3 + 9a-3z5 - 2a-3z7 + 2a-2 - 6a-2z2 + a-2z4 + 4a-2z6 - a-2z8 - 3a-1z-1 + 13a-1z - 22a-1z3 + 14a-1z5 - 2a-1z7 + 6z2 - 18z4 + 13z6 - 2z8 - 3az-1 + 16az - 23az3 + 6az5 + 4az7 - az9 - 2a2 + 13a2z2 - 27a2z4 + 18a2z6 - 3a2z8 - 2a3z-1 + 10a3z - 16a3z3 + 6a3z5 + 3a3z7 - a3z9 + 4a4z2 - 12a4z4 + 10a4z6 - 2a4z8 - a5z-1 + 4a5z - 7a5z3 + 5a5z5 - a5z7

Khovanov Homology:
trqj r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5
j = 10           1
j = 8          1 
j = 6         11 
j = 4       221  
j = 2      111   
j = 0     242    
j = -2    222     
j = -4   121      
j = -6  221       
j = -8 12         
j = -10 1          
j = -121           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, NonAlternating, 120]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, NonAlternating, 120]]
Out[4]=   
PD[X[6, 1, 7, 2], X[14, 3, 15, 4], X[9, 16, 10, 17], X[11, 21, 12, 20], 
 
>   X[21, 9, 22, 8], X[7, 19, 8, 18], X[19, 13, 20, 12], X[15, 10, 16, 11], 
 
>   X[17, 5, 18, 22], X[2, 5, 3, 6], X[4, 13, 1, 14]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -10, 2, -11}, {10, -1, -6, 5, -3, 8, -4, 7, 11, -2, -8, 3, -9, 6, 
 
>    -7, 4, -5, 9}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(11/2)    2      3      2      2      3/2      5/2      7/2    9/2
-q        + ---- - ---- + ---- - ---- - q    + 2 q    - 2 q    + q
             9/2    7/2    5/2    3/2
            q      q      q      q
In[7]:=
A2Invariant[L][q]
Out[7]=   
 -18    -16    -12   2     -6    -4   2       2    10    14
q    + q    + q    + -- + q   + q   + -- + 2 q  - q   - q
                      8                2
                     q                q
In[8]:=
HOMFLYPT[Link[11, NonAlternating, 120]][a, z]
Out[8]=   
                      3    5                                        3      3
 1      3    3 a   2 a    a    2 z   7 z              3      5     z    5 z
---- - --- + --- - ---- + -- + --- - --- + 7 a z - 5 a  z + a  z + -- - ---- + 
 3     a z    z     z     z     3     a                             3    a
a  z                           a                                   a
 
                        5
         3      3  3   z       5
>   5 a z  - 2 a  z  - -- + a z
                       a
In[9]:=
Kauffman[Link[11, NonAlternating, 120]][a, z]
Out[9]=   
                                        3    5
 -4   2       2    1      3    3 a   2 a    a    3 z   13 z
a   + -- - 2 a  - ---- - --- - --- - ---- - -- + --- + ---- + 16 a z + 
       2           3     a z    z     z     z     3     a
      a           a  z                           a
 
                                 2      2                           3       3
        3        5        2   3 z    6 z        2  2      4  2   8 z    22 z
>   10 a  z + 4 a  z + 6 z  - ---- - ---- + 13 a  z  + 4 a  z  - ---- - ----- - 
                                4      2                           3      a
                               a      a                           a
 
                                              4    4
          3       3  3      5  3       4   4 z    z        2  4       4  4
>   23 a z  - 16 a  z  - 7 a  z  - 18 z  + ---- + -- - 27 a  z  - 12 a  z  + 
                                             4     2
                                            a     a
 
       5       5                                         6      6
    9 z    14 z         5      3  5      5  5       6   z    4 z        2  6
>   ---- + ----- + 6 a z  + 6 a  z  + 5 a  z  + 13 z  - -- + ---- + 18 a  z  + 
      3      a                                           4     2
     a                                                  a     a
 
                  7      7                                      8
        4  6   2 z    2 z         7      3  7    5  7      8   z       2  8
>   10 a  z  - ---- - ---- + 4 a z  + 3 a  z  - a  z  - 2 z  - -- - 3 a  z  - 
                 3     a                                        2
                a                                              a
 
       4  8      9    3  9
>   2 a  z  - a z  - a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
    2     2     1        1        1       2       2       2       1       1
4 + -- + q  + ------ + ------ + ----- + ----- + ----- + ----- + ----- + ----- + 
     2         12  6    10  5    8  5    8  4    6  4    6  3    4  3    6  2
    q         q   t    q   t    q  t    q  t    q  t    q  t    q  t    q  t
 
      2       2     2    1      2            2        4      2  2      4  2
>   ----- + ----- + - + ---- + ---- + 2 t + q  t + 2 q  t + q  t  + 2 q  t  + 
     4  2    2  2   t    4      2
    q  t    q  t        q  t   q  t
 
     4  3    6  3    6  4    8  4    10  5
>   q  t  + q  t  + q  t  + q  t  + q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11n120
L11n119
L11n119
L11n121
L11n121