© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11n111
L11n111
L11n113
L11n113
L11n112
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11n112

Visit L11n112's page at Knotilus!

Acknowledgement

L11n112 as Morse Link
DrawMorseLink

PD Presentation: X6172 X12,4,13,3 X7,18,8,19 X19,22,20,5 X9,21,10,20 X21,9,22,8 X11,17,12,16 X17,15,18,14 X15,11,16,10 X2536 X4,14,1,13

Gauss Code: {{1, -10, 2, -11}, {10, -1, -3, 6, -5, 9, -7, -2, 11, 8, -9, 7, -8, 3, -4, 5, -6, 4}}

Jones Polynomial: - q-5/2 + q-3/2 - q-1/2 - q1/2 + 2q3/2 - 3q5/2 + 3q7/2 - 4q9/2 + 3q11/2 - 2q13/2 + q15/2

A2 (sl(3)) Invariant: q-8 + q-6 + 2q-4 + q-2 + 2 - 2q4 - q8 + 2q10 + 2q12 + 2q14 + 2q16 - q18 - q22 - q24

HOMFLY-PT Polynomial: a-7z-1 + a-7z - 4a-5z-1 - 5a-5z - 2a-5z3 + 6a-3z-1 + 10a-3z + 5a-3z3 + a-3z5 - 5a-1z-1 - 9a-1z - 6a-1z3 - a-1z5 + 2az-1 + 3az + az3

Kauffman Polynomial: a-8 - 4a-8z2 + 4a-8z4 - a-8z6 - a-7z-1 + 4a-7z - 8a-7z3 + 8a-7z5 - 2a-7z7 + 3a-6 - 9a-6z2 + 8a-6z4 + a-6z6 - a-6z8 - 4a-5z-1 + 16a-5z - 24a-5z3 + 18a-5z5 - 4a-5z7 + 3a-4 - 7a-4z2 + 2a-4z4 + 3a-4z6 - a-4z8 - 6a-3z-1 + 27a-3z - 39a-3z3 + 20a-3z5 - 3a-3z7 + a-2 - 10a-2z4 + 7a-2z6 - a-2z8 - 5a-1z-1 + 22a-1z - 33a-1z3 + 16a-1z5 - 2a-1z7 + 1 + 2z2 - 8z4 + 6z6 - z8 - 2az-1 + 7az - 10az3 + 6az5 - az7

Khovanov Homology:
trqj r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7
j = 16           1
j = 14          1 
j = 12         21 
j = 10        21  
j = 8      122   
j = 6      22    
j = 4    122     
j = 2   122      
j = 0   13       
j = -2 11         
j = -4            
j = -61           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, NonAlternating, 112]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, NonAlternating, 112]]
Out[4]=   
PD[X[6, 1, 7, 2], X[12, 4, 13, 3], X[7, 18, 8, 19], X[19, 22, 20, 5], 
 
>   X[9, 21, 10, 20], X[21, 9, 22, 8], X[11, 17, 12, 16], X[17, 15, 18, 14], 
 
>   X[15, 11, 16, 10], X[2, 5, 3, 6], X[4, 14, 1, 13]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -10, 2, -11}, {10, -1, -3, 6, -5, 9, -7, -2, 11, 8, -9, 7, -8, 3, 
 
>    -4, 5, -6, 4}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(5/2)    -(3/2)      1                   3/2      5/2      7/2      9/2
-q       + q       - ------- - Sqrt[q] + 2 q    - 3 q    + 3 q    - 4 q    + 
                     Sqrt[q]
 
       11/2      13/2    15/2
>   3 q     - 2 q     + q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -8    -6   2     -2      4    8      10      12      14      16    18
2 + q   + q   + -- + q   - 2 q  - q  + 2 q   + 2 q   + 2 q   + 2 q   - q   - 
                 4
                q
 
     22    24
>   q   - q
In[8]:=
HOMFLYPT[Link[11, NonAlternating, 112]][a, z]
Out[8]=   
                                                                    3      3
 1      4      6      5    2 a   z    5 z   10 z   9 z           2 z    5 z
---- - ---- + ---- - --- + --- + -- - --- + ---- - --- + 3 a z - ---- + ---- - 
 7      5      3     a z    z     7    5      3     a              5      3
a  z   a  z   a  z               a    a      a                    a      a
 
       3           5    5
    6 z       3   z    z
>   ---- + a z  + -- - --
     a             3   a
                  a
In[9]:=
Kauffman[Link[11, NonAlternating, 112]][a, z]
Out[9]=   
     -8   3    3     -2    1      4      6      5    2 a   4 z   16 z   27 z
1 + a   + -- + -- + a   - ---- - ---- - ---- - --- - --- + --- + ---- + ---- + 
           6    4          7      5      3     a z    z     7      5      3
          a    a          a  z   a  z   a  z               a      a      a
 
                             2      2      2      3       3       3       3
    22 z              2   4 z    9 z    7 z    8 z    24 z    39 z    33 z
>   ---- + 7 a z + 2 z  - ---- - ---- - ---- - ---- - ----- - ----- - ----- - 
     a                      8      6      4      7      5       3       a
                           a      a      a      a      a       a
 
                        4      4      4       4      5       5       5
          3      4   4 z    8 z    2 z    10 z    8 z    18 z    20 z
>   10 a z  - 8 z  + ---- + ---- + ---- - ----- + ---- + ----- + ----- + 
                       8      6      4      2       7      5       3
                      a      a      a      a       a      a       a
 
        5                    6    6      6      6      7      7      7      7
    16 z         5      6   z    z    3 z    7 z    2 z    4 z    3 z    2 z
>   ----- + 6 a z  + 6 z  - -- + -- + ---- + ---- - ---- - ---- - ---- - ---- - 
      a                      8    6     4      2      7      5      3     a
                            a    a     a      a      a      a      a
 
                 8    8    8
       7    8   z    z    z
>   a z  - z  - -- - -- - --
                 6    4    2
                a    a    a
In[10]:=
Kh[L][q, t]
Out[10]=   
                                             2
       2    4     1       1       1     1   q       2        4        4  2
3 + 2 q  + q  + ----- + ----- + ----- + - + -- + 2 q  t + 2 q  t + 2 q  t  + 
                 6  4    2  3    2  2   t   t
                q  t    q  t    q  t
 
       6  2    8  2      6  3      8  3      8  4      10  4    10  5
>   2 q  t  + q  t  + 2 q  t  + 2 q  t  + 2 q  t  + 2 q   t  + q   t  + 
 
       12  5    12  6    14  6    16  7
>   2 q   t  + q   t  + q   t  + q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11n112
L11n111
L11n111
L11n113
L11n113