© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11n110
L11n110
L11n112
L11n112
L11n111
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11n111

Visit L11n111's page at Knotilus!

Acknowledgement

L11n111 as Morse Link
DrawMorseLink

PD Presentation: X6172 X3,12,4,13 X7,18,8,19 X19,22,20,5 X9,21,10,20 X21,9,22,8 X16,11,17,12 X14,17,15,18 X10,15,11,16 X2536 X13,4,14,1

Gauss Code: {{1, -10, -2, 11}, {10, -1, -3, 6, -5, -9, 7, 2, -11, -8, 9, -7, 8, 3, -4, 5, -6, 4}}

Jones Polynomial: q-21/2 - 2q-19/2 + 2q-17/2 - 2q-15/2 + q-13/2 - q-11/2 + q-7/2 - 2q-5/2 + q-3/2 - q-1/2

A2 (sl(3)) Invariant: - q-34 - 2q-32 + q-30 + 2q-26 + 3q-24 + q-22 + q-20 - 2q-18 - q-14 + 2q-10 + 2q-8 + q-6 + q-4 + q-2

HOMFLY-PT Polynomial: - 2a3z-1 - 6a3z - 5a3z3 - a3z5 + 5a5z-1 + 11a5z + 11a5z3 + 6a5z5 + a5z7 - 6a7z-1 - 11a7z - 7a7z3 - a7z5 + 4a9z-1 + 4a9z - a11z-1

Kauffman Polynomial: - 2a3z-1 + 8a3z - 11a3z3 + 6a3z5 - a3z7 + a4 - 5a4z4 + 5a4z6 - a4z8 - 5a5z-1 + 22a5z - 33a5z3 + 19a5z5 - 3a5z7 + a6 - a6z2 - 6a6z4 + 6a6z6 - a6z8 - 6a7z-1 + 28a7z - 42a7z3 + 22a7z5 - 3a7z7 + 3a8 - 7a8z2 - a8z4 + 5a8z6 - a8z8 - 4a9z-1 + 18a9z - 29a9z3 + 18a9z5 - 3a9z7 + 3a10 - 9a10z2 + 4a10z4 + 3a10z6 - a10z8 - a11z-1 + 4a11z - 9a11z3 + 9a11z5 - 2a11z7 + a12 - 3a12z2 + 4a12z4 - a12z6

Khovanov Homology:
trqj r = -9r = -8r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2
j = 0           1
j = -2            
j = -4         21 
j = -6       111  
j = -8      111   
j = -10     221    
j = -12    231     
j = -14   111      
j = -16  121       
j = -18 11         
j = -20 1          
j = -221           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, NonAlternating, 111]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, NonAlternating, 111]]
Out[4]=   
PD[X[6, 1, 7, 2], X[3, 12, 4, 13], X[7, 18, 8, 19], X[19, 22, 20, 5], 
 
>   X[9, 21, 10, 20], X[21, 9, 22, 8], X[16, 11, 17, 12], X[14, 17, 15, 18], 
 
>   X[10, 15, 11, 16], X[2, 5, 3, 6], X[13, 4, 14, 1]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -10, -2, 11}, {10, -1, -3, 6, -5, -9, 7, 2, -11, -8, 9, -7, 8, 3, 
 
>    -4, 5, -6, 4}]
In[6]:=
Jones[L][q]
Out[6]=   
 -(21/2)     2       2       2      -(13/2)    -(11/2)    -(7/2)    2
q        - ----- + ----- - ----- + q        - q        + q       - ---- + 
            19/2    17/2    15/2                                    5/2
           q       q       q                                       q
 
     -(3/2)      1
>   q       - -------
              Sqrt[q]
In[7]:=
A2Invariant[L][q]
Out[7]=   
  -34    2     -30    2     3     -22    -20    2     -14    2    2     -6
-q    - --- + q    + --- + --- + q    + q    - --- - q    + --- + -- + q   + 
         32           26    24                  18           10    8
        q            q     q                   q            q     q
 
     -4    -2
>   q   + q
In[8]:=
HOMFLYPT[Link[11, NonAlternating, 111]][a, z]
Out[8]=   
    3      5      7      9    11
-2 a    5 a    6 a    4 a    a        3         5         7        9
----- + ---- - ---- + ---- - --- - 6 a  z + 11 a  z - 11 a  z + 4 a  z - 
  z      z      z      z      z
 
       3  3       5  3      7  3    3  5      5  5    7  5    5  7
>   5 a  z  + 11 a  z  - 7 a  z  - a  z  + 6 a  z  - a  z  + a  z
In[9]:=
Kauffman[Link[11, NonAlternating, 111]][a, z]
Out[9]=   
                                  3      5      7      9    11
 4    6      8      10    12   2 a    5 a    6 a    4 a    a        3
a  + a  + 3 a  + 3 a   + a   - ---- - ---- - ---- - ---- - --- + 8 a  z + 
                                z      z      z      z      z
 
        5         7         9        11      6  2      8  2      10  2
>   22 a  z + 28 a  z + 18 a  z + 4 a   z - a  z  - 7 a  z  - 9 a   z  - 
 
       12  2       3  3       5  3       7  3       9  3      11  3      4  4
>   3 a   z  - 11 a  z  - 33 a  z  - 42 a  z  - 29 a  z  - 9 a   z  - 5 a  z  - 
 
       6  4    8  4      10  4      12  4      3  5       5  5       7  5
>   6 a  z  - a  z  + 4 a   z  + 4 a   z  + 6 a  z  + 19 a  z  + 22 a  z  + 
 
        9  5      11  5      4  6      6  6      8  6      10  6    12  6
>   18 a  z  + 9 a   z  + 5 a  z  + 6 a  z  + 5 a  z  + 3 a   z  - a   z  - 
 
     3  7      5  7      7  7      9  7      11  7    4  8    6  8    8  8
>   a  z  - 3 a  z  - 3 a  z  - 3 a  z  - 2 a   z  - a  z  - a  z  - a  z  - 
 
     10  8
>   a   z
In[10]:=
Kh[L][q, t]
Out[10]=   
 -6   2      1        1        1        1        1        2        1
q   + -- + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
       4    22  9    20  8    18  8    18  7    16  7    16  6    14  6
      q    q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      1        1        2        1        3        2        1        2
>   ------ + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
     16  5    14  5    12  5    14  4    12  4    10  4    12  3    10  3
    q   t    q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      1       1        1       1      1      1     t     2
>   ----- + ------ + ----- + ----- + ---- + ---- + -- + t
     8  3    10  2    8  2    6  2    8      6      4
    q  t    q   t    q  t    q  t    q  t   q  t   q


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11n111
L11n110
L11n110
L11n112
L11n112