© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11a8
L11a8
L11a10
L11a10
L11a9
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11a9

Visit L11a9's page at Knotilus!

Acknowledgement

L11a9 as Morse Link
DrawMorseLink

PD Presentation: X6172 X16,7,17,8 X4,17,1,18 X12,6,13,5 X8493 X22,14,5,13 X14,22,15,21 X18,12,19,11 X20,10,21,9 X10,20,11,19 X2,16,3,15

Gauss Code: {{1, -11, 5, -3}, {4, -1, 2, -5, 9, -10, 8, -4, 6, -7, 11, -2, 3, -8, 10, -9, 7, -6}}

Jones Polynomial: q-5/2 - 4q-3/2 + 8q-1/2 - 14q1/2 + 17q3/2 - 20q5/2 + 18q7/2 - 16q9/2 + 12q11/2 - 6q13/2 + 3q15/2 - q17/2

A2 (sl(3)) Invariant: - q-8 + 2q-6 - 3q-2 + 5 + 3q4 + 5q6 + 4q10 - 3q12 - 5q18 + 2q20 - q24 + q26

HOMFLY-PT Polynomial: - a-7z - a-7z3 + a-5z-1 + 2a-5z + a-5z3 + a-5z5 - 3a-3z-1 - 2a-3z + 2a-3z3 + 2a-3z5 + 2a-1z-1 + a-1z + a-1z5 - az3

Kauffman Polynomial: - 4a-9z3 + 4a-9z5 - a-9z7 + 8a-8z2 - 16a-8z4 + 12a-8z6 - 3a-8z8 - 2a-7z + 6a-7z3 - 13a-7z5 + 13a-7z7 - 4a-7z9 - a-6 + 17a-6z2 - 34a-6z4 + 26a-6z6 - 3a-6z8 - 2a-6z10 + a-5z-1 - 4a-5z + 7a-5z3 - 20a-5z5 + 29a-5z7 - 11a-5z9 - 3a-4 + 13a-4z2 - 36a-4z4 + 42a-4z6 - 12a-4z8 - 2a-4z10 + 3a-3z-1 - 3a-3z - 13a-3z3 + 18a-3z5 + 3a-3z7 - 7a-3z9 - 3a-2 + 4a-2z2 - 11a-2z4 + 20a-2z6 - 12a-2z8 + 2a-1z-1 - a-1z - 8a-1z3 + 17a-1z5 - 12a-1z7 + 6z4 - 8z6 + 2az3 - 4az5 - a2z4

Khovanov Homology:
trqj r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7r = 8
j = 18           1
j = 16          2 
j = 14         41 
j = 12        82  
j = 10       84   
j = 8      108    
j = 6     108     
j = 4    710      
j = 2   710       
j = 0  39        
j = -2 15         
j = -4 3          
j = -61           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, Alternating, 9]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, Alternating, 9]]
Out[4]=   
PD[X[6, 1, 7, 2], X[16, 7, 17, 8], X[4, 17, 1, 18], X[12, 6, 13, 5], 
 
>   X[8, 4, 9, 3], X[22, 14, 5, 13], X[14, 22, 15, 21], X[18, 12, 19, 11], 
 
>   X[20, 10, 21, 9], X[10, 20, 11, 19], X[2, 16, 3, 15]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -11, 5, -3}, {4, -1, 2, -5, 9, -10, 8, -4, 6, -7, 11, -2, 3, -8, 
 
>    10, -9, 7, -6}]
In[6]:=
Jones[L][q]
Out[6]=   
 -(5/2)    4        8                       3/2       5/2       7/2       9/2
q       - ---- + ------- - 14 Sqrt[q] + 17 q    - 20 q    + 18 q    - 16 q    + 
           3/2   Sqrt[q]
          q
 
        11/2      13/2      15/2    17/2
>   12 q     - 6 q     + 3 q     - q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -8   2    3       4      6      10      12      18      20    24    26
5 - q   + -- - -- + 3 q  + 5 q  + 4 q   - 3 q   - 5 q   + 2 q   - q   + q
           6    2
          q    q
In[8]:=
HOMFLYPT[Link[11, Alternating, 9]][a, z]
Out[8]=   
                                          3    3      3           5      5    5
 1      3      2    z    2 z   2 z   z   z    z    2 z       3   z    2 z    z
---- - ---- + --- - -- + --- - --- + - - -- + -- + ---- - a z  + -- + ---- + --
 5      3     a z    7    5     3    a    7    5     3            5     3    a
a  z   a  z         a    a     a         a    a     a            a     a
In[9]:=
Kauffman[Link[11, Alternating, 9]][a, z]
Out[9]=   
                                                              2       2
  -6   3    3     1      3      2    2 z   4 z   3 z   z   8 z    17 z
-a   - -- - -- + ---- + ---- + --- - --- - --- - --- - - + ---- + ----- + 
        4    2    5      3     a z    7     5     3    a     8      6
       a    a    a  z   a  z         a     a     a          a      a
 
        2      2      3      3      3       3      3                       4
    13 z    4 z    4 z    6 z    7 z    13 z    8 z         3      4   16 z
>   ----- + ---- - ---- + ---- + ---- - ----- - ---- + 2 a z  + 6 z  - ----- - 
      4       2      9      7      5      3      a                       8
     a       a      a      a      a      a                              a
 
        4       4       4              5       5       5       5       5
    34 z    36 z    11 z     2  4   4 z    13 z    20 z    18 z    17 z
>   ----- - ----- - ----- - a  z  + ---- - ----- - ----- + ----- + ----- - 
      6       4       2               9      7       5       3       a
     a       a       a               a      a       a       a
 
                        6       6       6       6    7       7       7      7
         5      6   12 z    26 z    42 z    20 z    z    13 z    29 z    3 z
>   4 a z  - 8 z  + ----- + ----- + ----- + ----- - -- + ----- + ----- + ---- - 
                      8       6       4       2      9     7       5       3
                     a       a       a       a      a     a       a       a
 
        7      8      8       8       8      9       9      9      10      10
    12 z    3 z    3 z    12 z    12 z    4 z    11 z    7 z    2 z     2 z
>   ----- - ---- - ---- - ----- - ----- - ---- - ----- - ---- - ----- - -----
      a       8      6      4       2       7      5       3      6       4
             a      a      a       a       a      a       a      a       a
In[10]:=
Kh[L][q, t]
Out[10]=   
       2     1       3       1     3    5         2        4         4  2
9 + 7 q  + ----- + ----- + ----- + - + ---- + 10 q  t + 7 q  t + 10 q  t  + 
            6  3    4  2    2  2   t    2
           q  t    q  t    q  t        q  t
 
        6  2      6  3       8  3      8  4      10  4      10  5      12  5
>   10 q  t  + 8 q  t  + 10 q  t  + 8 q  t  + 8 q   t  + 4 q   t  + 8 q   t  + 
 
       12  6      14  6    14  7      16  7    18  8
>   2 q   t  + 4 q   t  + q   t  + 2 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11a9
L11a8
L11a8
L11a10
L11a10