© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11a7
L11a7
L11a9
L11a9
L11a8
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11a8

Visit L11a8's page at Knotilus!

Acknowledgement

L11a8 as Morse Link
DrawMorseLink

PD Presentation: X6172 X16,7,17,8 X4,17,1,18 X20,9,21,10 X8493 X18,22,19,21 X14,12,15,11 X12,5,13,6 X22,13,5,14 X10,19,11,20 X2,16,3,15

Gauss Code: {{1, -11, 5, -3}, {8, -1, 2, -5, 4, -10, 7, -8, 9, -7, 11, -2, 3, -6, 10, -4, 6, -9}}

Jones Polynomial: q-15/2 - 4q-13/2 + 10q-11/2 - 17q-9/2 + 23q-7/2 - 27q-5/2 + 27q-3/2 - 25q-1/2 + 17q1/2 - 11q3/2 + 5q5/2 - q7/2

A2 (sl(3)) Invariant: - q-24 + 3q-20 - 3q-18 - q-16 + 2q-14 - 6q-12 + 4q-10 + 2q-6 + 6q-4 - 2q-2 + 8 - 3q2 - q4 + 3q6 - 3q8 + q10

HOMFLY-PT Polynomial: - a-1z3 - a-1z5 - 2az-1 - az + 4az3 + 3az5 + az7 + 3a3z-1 - 5a3z3 - 3a3z5 - a5z-1 + 2a5z + 3a5z3 - a7z

Kauffman Polynomial: - a-3z5 + 4a-2z4 - 5a-2z6 - 7a-1z3 + 15a-1z5 - 11a-1z7 + 2z2 - 4z4 + 15z6 - 13z8 + 2az-1 - az - 25az3 + 41az5 - 10az7 - 8az9 - 3a2 + 11a2z2 - 39a2z4 + 61a2z6 - 27a2z8 - 2a2z10 + 3a3z-1 + a3z - 30a3z3 + 35a3z5 + 8a3z7 - 15a3z9 - 3a4 + 16a4z2 - 47a4z4 + 59a4z6 - 22a4z8 - 2a4z10 + a5z-1 + 4a5z - 18a5z3 + 18a5z5 + 3a5z7 - 7a5z9 - a6 + 6a6z2 - 14a6z4 + 17a6z6 - 8a6z8 + 2a7z - 6a7z3 + 8a7z5 - 4a7z7 - a8z2 + 2a8z4 - a8z6

Khovanov Homology:
trqj r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4
j = 8           1
j = 6          4 
j = 4         71 
j = 2        104  
j = 0       157   
j = -2      1412    
j = -4     1313     
j = -6    1014      
j = -8   713       
j = -10  310        
j = -12 17         
j = -14 3          
j = -161           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, Alternating, 8]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, Alternating, 8]]
Out[4]=   
PD[X[6, 1, 7, 2], X[16, 7, 17, 8], X[4, 17, 1, 18], X[20, 9, 21, 10], 
 
>   X[8, 4, 9, 3], X[18, 22, 19, 21], X[14, 12, 15, 11], X[12, 5, 13, 6], 
 
>   X[22, 13, 5, 14], X[10, 19, 11, 20], X[2, 16, 3, 15]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -11, 5, -3}, {8, -1, 2, -5, 4, -10, 7, -8, 9, -7, 11, -2, 3, -6, 
 
>    10, -4, 6, -9}]
In[6]:=
Jones[L][q]
Out[6]=   
 -(15/2)     4      10      17     23     27     27      25
q        - ----- + ----- - ---- + ---- - ---- + ---- - ------- + 17 Sqrt[q] - 
            13/2    11/2    9/2    7/2    5/2    3/2   Sqrt[q]
           q       q       q      q      q      q
 
        3/2      5/2    7/2
>   11 q    + 5 q    - q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -24    3     3     -16    2     6     4    2    6    2       2    4
8 - q    + --- - --- - q    + --- - --- + --- + -- + -- - -- - 3 q  - q  + 
            20    18           14    12    10    6    4    2
           q     q            q     q     q     q    q    q
 
       6      8    10
>   3 q  - 3 q  + q
In[8]:=
HOMFLYPT[Link[11, Alternating, 8]][a, z]
Out[8]=   
          3    5                          3                                 5
-2 a   3 a    a             5      7     z         3      3  3      5  3   z
---- + ---- - -- - a z + 2 a  z - a  z - -- + 4 a z  - 5 a  z  + 3 a  z  - -- + 
 z      z     z                          a                                 a
 
         5      3  5      7
>   3 a z  - 3 a  z  + a z
In[9]:=
Kauffman[Link[11, Alternating, 8]][a, z]
Out[9]=   
                             3    5
    2      4    6   2 a   3 a    a           3        5        7        2
-3 a  - 3 a  - a  + --- + ---- + -- - a z + a  z + 4 a  z + 2 a  z + 2 z  + 
                     z     z     z
 
                                               3
        2  2       4  2      6  2    8  2   7 z          3       3  3
>   11 a  z  + 16 a  z  + 6 a  z  - a  z  - ---- - 25 a z  - 30 a  z  - 
                                             a
 
                                   4
        5  3      7  3      4   4 z        2  4       4  4       6  4
>   18 a  z  - 6 a  z  - 4 z  + ---- - 39 a  z  - 47 a  z  - 14 a  z  + 
                                  2
                                 a
 
               5       5
       8  4   z    15 z          5       3  5       5  5      7  5       6
>   2 a  z  - -- + ----- + 41 a z  + 35 a  z  + 18 a  z  + 8 a  z  + 15 z  - 
               3     a
              a
 
       6                                                7
    5 z        2  6       4  6       6  6    8  6   11 z          7      3  7
>   ---- + 61 a  z  + 59 a  z  + 17 a  z  - a  z  - ----- - 10 a z  + 8 a  z  + 
      2                                               a
     a
 
       5  7      7  7       8       2  8       4  8      6  8        9
>   3 a  z  - 4 a  z  - 13 z  - 27 a  z  - 22 a  z  - 8 a  z  - 8 a z  - 
 
        3  9      5  9      2  10      4  10
>   15 a  z  - 7 a  z  - 2 a  z   - 2 a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
     12     1        3        1        7        3        10       7      13
15 + -- + ------ + ------ + ------ + ------ + ------ + ------ + ----- + ----- + 
      2    16  7    14  6    12  6    12  5    10  5    10  4    8  4    8  3
     q    q   t    q   t    q   t    q   t    q   t    q   t    q  t    q  t
 
     10      14      13      13     14              2        2  2      4  2
>   ----- + ----- + ----- + ---- + ---- + 7 t + 10 q  t + 4 q  t  + 7 q  t  + 
     6  3    6  2    4  2    4      2
    q  t    q  t    q  t    q  t   q  t
 
     4  3      6  3    8  4
>   q  t  + 4 q  t  + q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11a8
L11a7
L11a7
L11a9
L11a9