© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11a74
L11a74
L11a76
L11a76
L11a75
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11a75

Visit L11a75's page at Knotilus!

Acknowledgement

L11a75 as Morse Link
DrawMorseLink

PD Presentation: X6172 X12,3,13,4 X20,15,21,16 X16,7,17,8 X18,9,19,10 X8,17,9,18 X10,19,11,20 X22,13,5,14 X14,21,15,22 X2536 X4,11,1,12

Gauss Code: {{1, -10, 2, -11}, {10, -1, 4, -6, 5, -7, 11, -2, 8, -9, 3, -4, 6, -5, 7, -3, 9, -8}}

Jones Polynomial: q-27/2 - 2q-25/2 + 5q-23/2 - 7q-21/2 + 9q-19/2 - 11q-17/2 + 10q-15/2 - 10q-13/2 + 6q-11/2 - 4q-9/2 + 2q-7/2 - q-5/2

A2 (sl(3)) Invariant: - q-42 - 2q-40 - q-38 - 3q-36 - q-34 + q-32 + 4q-28 + 2q-26 + 3q-24 + 3q-22 + 3q-18 + q-12 - q-10 + q-8

HOMFLY-PT Polynomial: - a5z - 3a5z3 - a5z5 - a7z-1 - 4a7z - 6a7z3 - 2a7z5 - a9z-1 - 4a9z - 6a9z3 - 2a9z5 + 4a11z-1 + 8a11z + 3a11z3 - 2a13z-1 - a13z

Kauffman Polynomial: - a5z + 3a5z3 - a5z5 - a6z2 + 5a6z4 - 2a6z6 - a7z-1 + 5a7z - 9a7z3 + 9a7z5 - 3a7z7 + a8 - 2a8z2 - 6a8z4 + 8a8z6 - 3a8z8 + a9z-1 - 2a9z + 6a9z3 - 17a9z5 + 11a9z7 - 3a9z9 - 5a10 + 18a10z2 - 29a10z4 + 13a10z6 - a10z8 - a10z10 + 4a11z-1 - 15a11z + 34a11z3 - 40a11z5 + 21a11z7 - 5a11z9 - 6a12 + 19a12z2 - 17a12z4 + 7a12z6 - a12z10 + 2a13z-1 - 8a13z + 13a13z3 - 7a13z5 + 5a13z7 - 2a13z9 + a14 - 5a14z2 + 5a14z4 + 3a14z6 - 2a14z8 - a15z - 3a15z3 + 6a15z5 - 2a15z7 + 2a16 - 5a16z2 + 4a16z4 - a16z6

Khovanov Homology:
trqj r = -11r = -10r = -9r = -8r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0
j = -4           1
j = -6          21
j = -8         2  
j = -10        42  
j = -12       62   
j = -14      55    
j = -16     65     
j = -18    35      
j = -20   46       
j = -22  13        
j = -24 14         
j = -26 1          
j = -281           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, Alternating, 75]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, Alternating, 75]]
Out[4]=   
PD[X[6, 1, 7, 2], X[12, 3, 13, 4], X[20, 15, 21, 16], X[16, 7, 17, 8], 
 
>   X[18, 9, 19, 10], X[8, 17, 9, 18], X[10, 19, 11, 20], X[22, 13, 5, 14], 
 
>   X[14, 21, 15, 22], X[2, 5, 3, 6], X[4, 11, 1, 12]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -10, 2, -11}, {10, -1, 4, -6, 5, -7, 11, -2, 8, -9, 3, -4, 6, -5, 
 
>    7, -3, 9, -8}]
In[6]:=
Jones[L][q]
Out[6]=   
 -(27/2)     2       5       7       9      11      10      10       6
q        - ----- + ----- - ----- + ----- - ----- + ----- - ----- + ----- - 
            25/2    23/2    21/2    19/2    17/2    15/2    13/2    11/2
           q       q       q       q       q       q       q       q
 
     4      2      -(5/2)
>   ---- + ---- - q
     9/2    7/2
    q      q
In[7]:=
A2Invariant[L][q]
Out[7]=   
  -42    2     -38    3     -34    -32    4     2     3     3     3     -12
-q    - --- - q    - --- - q    + q    + --- + --- + --- + --- + --- + q    - 
         40           36                  28    26    24    22    18
        q            q                   q     q     q     q     q
 
     -10    -8
>   q    + q
In[8]:=
HOMFLYPT[Link[11, Alternating, 75]][a, z]
Out[8]=   
   7     9      11      13
  a     a    4 a     2 a      5        7        9        11      13
-(--) - -- + ----- - ----- - a  z - 4 a  z - 4 a  z + 8 a   z - a   z - 
  z     z      z       z
 
       5  3      7  3      9  3      11  3    5  5      7  5      9  5
>   3 a  z  - 6 a  z  - 6 a  z  + 3 a   z  - a  z  - 2 a  z  - 2 a  z
In[9]:=
Kauffman[Link[11, Alternating, 75]][a, z]
Out[9]=   
                                    7    9      11      13
 8      10      12    14      16   a    a    4 a     2 a      5        7
a  - 5 a   - 6 a   + a   + 2 a   - -- + -- + ----- + ----- - a  z + 5 a  z - 
                                   z    z      z       z
 
       9         11        13      15      6  2      8  2       10  2
>   2 a  z - 15 a   z - 8 a   z - a   z - a  z  - 2 a  z  + 18 a   z  + 
 
        12  2      14  2      16  2      5  3      7  3      9  3       11  3
>   19 a   z  - 5 a   z  - 5 a   z  + 3 a  z  - 9 a  z  + 6 a  z  + 34 a   z  + 
 
        13  3      15  3      6  4      8  4       10  4       12  4
>   13 a   z  - 3 a   z  + 5 a  z  - 6 a  z  - 29 a   z  - 17 a   z  + 
 
       14  4      16  4    5  5      7  5       9  5       11  5      13  5
>   5 a   z  + 4 a   z  - a  z  + 9 a  z  - 17 a  z  - 40 a   z  - 7 a   z  + 
 
       15  5      6  6      8  6       10  6      12  6      14  6    16  6
>   6 a   z  - 2 a  z  + 8 a  z  + 13 a   z  + 7 a   z  + 3 a   z  - a   z  - 
 
       7  7       9  7       11  7      13  7      15  7      8  8    10  8
>   3 a  z  + 11 a  z  + 21 a   z  + 5 a   z  - 2 a   z  - 3 a  z  - a   z  - 
 
       14  8      9  9      11  9      13  9    10  10    12  10
>   2 a   z  - 3 a  z  - 5 a   z  - 2 a   z  - a   z   - a   z
In[10]:=
Kh[L][q, t]
Out[10]=   
 -6    -4      1         1         1        4        1        3        4
q   + q   + ------- + ------- + ------- + ------ + ------ + ------ + ------ + 
             28  11    26  10    24  10    24  9    22  9    22  8    20  8
            q   t     q   t     q   t     q   t    q   t    q   t    q   t
 
      6        3        5        6        5        5        5        6
>   ------ + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
     20  7    18  7    18  6    16  6    16  5    14  5    14  4    12  4
    q   t    q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      2        4        2        2      2
>   ------ + ------ + ------ + ----- + ----
     12  3    10  3    10  2    8  2    6
    q   t    q   t    q   t    q  t    q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11a75
L11a74
L11a74
L11a76
L11a76