© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11a73
L11a73
L11a75
L11a75
L11a74
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11a74

Visit L11a74's page at Knotilus!

Acknowledgement

L11a74 as Morse Link
DrawMorseLink

PD Presentation: X6172 X12,3,13,4 X16,8,17,7 X22,13,5,14 X20,18,21,17 X18,9,19,10 X8,19,9,20 X14,21,15,22 X10,16,11,15 X2536 X4,11,1,12

Gauss Code: {{1, -10, 2, -11}, {10, -1, 3, -7, 6, -9, 11, -2, 4, -8, 9, -3, 5, -6, 7, -5, 8, -4}}

Jones Polynomial: - q-17/2 + 3q-15/2 - 7q-13/2 + 11q-11/2 - 15q-9/2 + 18q-7/2 - 19q-5/2 + 16q-3/2 - 13q-1/2 + 8q1/2 - 4q3/2 + q5/2

A2 (sl(3)) Invariant: q-28 + 2q-26 - q-24 + 2q-20 - 4q-18 + q-16 + q-14 - 2q-12 + 4q-10 + 4q-6 + q-4 - 2q-2 + 4 - 3q2 + 2q6 - q8

HOMFLY-PT Polynomial: a-1z3 - az5 - 2a3z-1 - 6a3z - 4a3z3 - 2a3z5 + 4a5z-1 + 8a5z + 5a5z3 - 3a7z-1 - 4a7z + a9z-1

Kauffman Polynomial: - a-2z4 + 2a-1z3 - 4a-1z5 - z2 + 7z4 - 8z6 + 2az - 8az3 + 15az5 - 11az7 - a2 + 2a2z2 - 4a2z4 + 13a2z6 - 10a2z8 - 2a3z-1 + 15a3z - 38a3z3 + 39a3z5 - 7a3z7 - 5a3z9 - 2a4 + 15a4z2 - 45a4z4 + 52a4z6 - 17a4z8 - a4z10 - 4a5z-1 + 25a5z - 50a5z3 + 30a5z5 + 9a5z7 - 8a5z9 - 3a6 + 18a6z2 - 46a6z4 + 42a6z6 - 10a6z8 - a6z10 - 3a7z-1 + 16a7z - 28a7z3 + 14a7z5 + 4a7z7 - 3a7z9 - a8 + 6a8z2 - 13a8z4 + 11a8z6 - 3a8z8 - a9z-1 + 4a9z - 6a9z3 + 4a9z5 - a9z7

Khovanov Homology:
trqj r = -8r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3
j = 6           1
j = 4          3 
j = 2         51 
j = 0        83  
j = -2       96   
j = -4      107    
j = -6     89     
j = -8    710      
j = -10   59       
j = -12  26        
j = -14 15         
j = -16 2          
j = -181           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, Alternating, 74]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, Alternating, 74]]
Out[4]=   
PD[X[6, 1, 7, 2], X[12, 3, 13, 4], X[16, 8, 17, 7], X[22, 13, 5, 14], 
 
>   X[20, 18, 21, 17], X[18, 9, 19, 10], X[8, 19, 9, 20], X[14, 21, 15, 22], 
 
>   X[10, 16, 11, 15], X[2, 5, 3, 6], X[4, 11, 1, 12]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -10, 2, -11}, {10, -1, 3, -7, 6, -9, 11, -2, 4, -8, 9, -3, 5, -6, 
 
>    7, -5, 8, -4}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(17/2)     3       7      11      15     18     19     16      13
-q        + ----- - ----- + ----- - ---- + ---- - ---- + ---- - ------- + 
             15/2    13/2    11/2    9/2    7/2    5/2    3/2   Sqrt[q]
            q       q       q       q      q      q      q
 
                   3/2    5/2
>   8 Sqrt[q] - 4 q    + q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -28    2     -24    2     4     -16    -14    2     4    4     -4   2
4 + q    + --- - q    + --- - --- + q    + q    - --- + --- + -- + q   - -- - 
            26           20    18                  12    10    6          2
           q            q     q                   q     q     q          q
 
       2      6    8
>   3 q  + 2 q  - q
In[8]:=
HOMFLYPT[Link[11, Alternating, 74]][a, z]
Out[8]=   
    3      5      7    9                               3
-2 a    4 a    3 a    a       3        5        7     z       3  3      5  3
----- + ---- - ---- + -- - 6 a  z + 8 a  z - 4 a  z + -- - 4 a  z  + 5 a  z  - 
  z      z      z     z                               a
 
       5      3  5
>   a z  - 2 a  z
In[9]:=
Kauffman[Link[11, Alternating, 74]][a, z]
Out[9]=   
                            3      5      7    9
  2      4      6    8   2 a    4 a    3 a    a                3         5
-a  - 2 a  - 3 a  - a  - ---- - ---- - ---- - -- + 2 a z + 15 a  z + 25 a  z + 
                          z      z      z     z
 
                                                                         3
        7        9      2      2  2       4  2       6  2      8  2   2 z
>   16 a  z + 4 a  z - z  + 2 a  z  + 15 a  z  + 18 a  z  + 6 a  z  + ---- - 
                                                                       a
 
                                                                4
         3       3  3       5  3       7  3      9  3      4   z       2  4
>   8 a z  - 38 a  z  - 50 a  z  - 28 a  z  - 6 a  z  + 7 z  - -- - 4 a  z  - 
                                                                2
                                                               a
 
                                        5
        4  4       6  4       8  4   4 z          5       3  5       5  5
>   45 a  z  - 46 a  z  - 13 a  z  - ---- + 15 a z  + 39 a  z  + 30 a  z  + 
                                      a
 
        7  5      9  5      6       2  6       4  6       6  6       8  6
>   14 a  z  + 4 a  z  - 8 z  + 13 a  z  + 52 a  z  + 42 a  z  + 11 a  z  - 
 
          7      3  7      5  7      7  7    9  7       2  8       4  8
>   11 a z  - 7 a  z  + 9 a  z  + 4 a  z  - a  z  - 10 a  z  - 17 a  z  - 
 
        6  8      8  8      3  9      5  9      7  9    4  10    6  10
>   10 a  z  - 3 a  z  - 5 a  z  - 8 a  z  - 3 a  z  - a  z   - a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
    6      1        2        1        5        2        6        5
8 + -- + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
     2    18  8    16  7    14  7    14  6    12  6    12  5    10  5
    q    q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      9        7      10       8       9      10      7      9
>   ------ + ----- + ----- + ----- + ----- + ----- + ---- + ---- + 3 t + 
     10  4    8  4    8  3    6  3    6  2    4  2    4      2
    q   t    q  t    q  t    q  t    q  t    q  t    q  t   q  t
 
       2      2  2      4  2    6  3
>   5 q  t + q  t  + 3 q  t  + q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11a74
L11a73
L11a73
L11a75
L11a75