© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11a44
L11a44
L11a46
L11a46
L11a45
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11a45

Visit L11a45's page at Knotilus!

Acknowledgement

L11a45 as Morse Link
DrawMorseLink

PD Presentation: X6172 X14,7,15,8 X18,9,19,10 X20,15,21,16 X16,19,17,20 X8,17,9,18 X4,21,1,22 X12,6,13,5 X10,4,11,3 X22,12,5,11 X2,14,3,13

Gauss Code: {{1, -11, 9, -7}, {8, -1, 2, -6, 3, -9, 10, -8, 11, -2, 4, -5, 6, -3, 5, -4, 7, -10}}

Jones Polynomial: q-15/2 - 4q-13/2 + 9q-11/2 - 14q-9/2 + 20q-7/2 - 24q-5/2 + 22q-3/2 - 21q-1/2 + 15q1/2 - 9q3/2 + 4q5/2 - q7/2

A2 (sl(3)) Invariant: - q-22 + 2q-20 - 2q-18 - q-16 + q-14 - 6q-12 + 4q-10 + q-8 + 4q-6 + 6q-4 - 2q-2 + 5 - 3q2 + 2q6 - 2q8 + q10

HOMFLY-PT Polynomial: - a-1z - 2a-1z3 - a-1z5 - 2az-1 + 3az3 + 3az5 + az7 + 3a3z-1 + 2a3z + 3a3z3 + 3a3z5 + a3z7 - a5z-1 - a5z - 2a5z3 - a5z5

Kauffman Polynomial: a-3z3 - a-3z5 - 2a-2z2 + 5a-2z4 - 4a-2z6 + 2a-1z - 8a-1z3 + 12a-1z5 - 8a-1z7 - 3z2 + z4 + 9z6 - 9z8 + 2az-1 + az - 13az3 + 20az5 - 4az7 - 6az9 - 3a2 + a2z2 - 10a2z4 + 27a2z6 - 14a2z8 - 2a2z10 + 3a3z-1 - 3a3z + a3z3 + 15a3z7 - 12a3z9 - 3a4 + 5a4z2 - 19a4z4 + 31a4z6 - 12a4z8 - 2a4z10 + a5z-1 - 2a5z + 2a5z5 + 7a5z7 - 6a5z9 - a6 + 2a6z2 - 11a6z4 + 16a6z6 - 7a6z8 - 5a7z3 + 9a7z5 - 4a7z7 - a8z2 + 2a8z4 - a8z6

Khovanov Homology:
trqj r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4
j = 8           1
j = 6          3 
j = 4         61 
j = 2        93  
j = 0       126   
j = -2      1211    
j = -4     1210     
j = -6    812      
j = -8   612       
j = -10  38        
j = -12 16         
j = -14 3          
j = -161           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, Alternating, 45]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, Alternating, 45]]
Out[4]=   
PD[X[6, 1, 7, 2], X[14, 7, 15, 8], X[18, 9, 19, 10], X[20, 15, 21, 16], 
 
>   X[16, 19, 17, 20], X[8, 17, 9, 18], X[4, 21, 1, 22], X[12, 6, 13, 5], 
 
>   X[10, 4, 11, 3], X[22, 12, 5, 11], X[2, 14, 3, 13]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -11, 9, -7}, {8, -1, 2, -6, 3, -9, 10, -8, 11, -2, 4, -5, 6, -3, 
 
>    5, -4, 7, -10}]
In[6]:=
Jones[L][q]
Out[6]=   
 -(15/2)     4       9      14     20     24     22      21
q        - ----- + ----- - ---- + ---- - ---- + ---- - ------- + 15 Sqrt[q] - 
            13/2    11/2    9/2    7/2    5/2    3/2   Sqrt[q]
           q       q       q      q      q      q
 
       3/2      5/2    7/2
>   9 q    + 4 q    - q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -22    2     2     -16    -14    6     4     -8   4    6    2       2
5 - q    + --- - --- - q    + q    - --- + --- + q   + -- + -- - -- - 3 q  + 
            20    18                  12    10          6    4    2
           q     q                   q     q           q    q    q
 
       6      8    10
>   2 q  - 2 q  + q
In[8]:=
HOMFLYPT[Link[11, Alternating, 45]][a, z]
Out[8]=   
          3    5                          3                                 5
-2 a   3 a    a    z      3      5     2 z         3      3  3      5  3   z
---- + ---- - -- - - + 2 a  z - a  z - ---- + 3 a z  + 3 a  z  - 2 a  z  - -- + 
 z      z     z    a                    a                                  a
 
         5      3  5    5  5      7    3  7
>   3 a z  + 3 a  z  - a  z  + a z  + a  z
In[9]:=
Kauffman[Link[11, Alternating, 45]][a, z]
Out[9]=   
                             3    5
    2      4    6   2 a   3 a    a    2 z            3        5        2
-3 a  - 3 a  - a  + --- + ---- + -- + --- + a z - 3 a  z - 2 a  z - 3 z  - 
                     z     z     z     a
 
       2                                        3      3
    2 z     2  2      4  2      6  2    8  2   z    8 z          3    3  3
>   ---- + a  z  + 5 a  z  + 2 a  z  - a  z  + -- - ---- - 13 a z  + a  z  - 
      2                                         3    a
     a                                         a
 
                      4                                               5
       7  3    4   5 z        2  4       4  4       6  4      8  4   z
>   5 a  z  + z  + ---- - 10 a  z  - 19 a  z  - 11 a  z  + 2 a  z  - -- + 
                     2                                                3
                    a                                                a
 
        5                                           6
    12 z          5      5  5      7  5      6   4 z        2  6       4  6
>   ----- + 20 a z  + 2 a  z  + 9 a  z  + 9 z  - ---- + 27 a  z  + 31 a  z  + 
      a                                            2
                                                  a
 
                          7
        6  6    8  6   8 z         7       3  7      5  7      7  7      8
>   16 a  z  - a  z  - ---- - 4 a z  + 15 a  z  + 7 a  z  - 4 a  z  - 9 z  - 
                        a
 
        2  8       4  8      6  8        9       3  9      5  9      2  10
>   14 a  z  - 12 a  z  - 7 a  z  - 6 a z  - 12 a  z  - 6 a  z  - 2 a  z   - 
 
       4  10
>   2 a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
     11     1        3        1        6        3        8        6      12
12 + -- + ------ + ------ + ------ + ------ + ------ + ------ + ----- + ----- + 
      2    16  7    14  6    12  6    12  5    10  5    10  4    8  4    8  3
     q    q   t    q   t    q   t    q   t    q   t    q   t    q  t    q  t
 
      8      12      12      10     12             2        2  2      4  2
>   ----- + ----- + ----- + ---- + ---- + 6 t + 9 q  t + 3 q  t  + 6 q  t  + 
     6  3    6  2    4  2    4      2
    q  t    q  t    q  t    q  t   q  t
 
     4  3      6  3    8  4
>   q  t  + 3 q  t  + q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11a45
L11a44
L11a44
L11a46
L11a46