© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11a441
L11a441
L11a443
L11a443
L11a442
Knotscape
This page is passe. Go here instead!

The 3-Component Link

L11a442

Visit L11a442's page at Knotilus!

Acknowledgement

L11a442 as Morse Link
DrawMorseLink

PD Presentation: X6172 X14,3,15,4 X22,16,13,15 X8,18,9,17 X16,8,17,7 X18,10,19,9 X20,12,21,11 X10,20,11,19 X12,22,5,21 X2536 X4,13,1,14

Gauss Code: {{1, -10, 2, -11}, {10, -1, 5, -4, 6, -8, 7, -9}, {11, -2, 3, -5, 4, -6, 8, -7, 9, -3}}

Jones Polynomial: q-2 - q-1 + 4 - 4q + 6q2 - 7q3 + 8q4 - 7q5 + 6q6 - 4q7 + 3q8 - q9

A2 (sl(3)) Invariant: q-6 + 2q-4 + 2q-2 + 4 + 3q2 + 3q4 + 2q6 + q8 + 3q10 + 3q14 + q16 + q18 + q20 + q24 - q26

HOMFLY-PT Polynomial: - 3a-6z2 - 4a-6z4 - a-6z6 + a-4z-2 + 5a-4 + 11a-4z2 + 12a-4z4 + 6a-4z6 + a-4z8 - 2a-2z-2 - 11a-2 - 18a-2z2 - 11a-2z4 - 2a-2z6 + z-2 + 6 + 5z2 + z4

Kauffman Polynomial: a-11z3 - 2a-10z2 + 3a-10z4 - 3a-9z3 + 4a-9z5 + a-8 - 2a-8z2 - 3a-8z4 + 4a-8z6 - 6a-7z5 + 4a-7z7 - 3a-6z2 + 8a-6z4 - 11a-6z6 + 4a-6z8 - 2a-5z3 + 8a-5z5 - 10a-5z7 + 3a-5z9 - a-4z-2 + 5a-4 - 10a-4z2 + 19a-4z4 - 13a-4z6 + a-4z10 + 2a-3z-1 - 11a-3z + 6a-3z3 + 18a-3z5 - 18a-3z7 + 4a-3z9 - 2a-2z-2 + 13a-2 - 25a-2z2 + 22a-2z4 - 5a-2z6 - 3a-2z8 + a-2z10 + 2a-1z-1 - 11a-1z + 12a-1z3 - 4a-1z7 + a-1z9 - z-2 + 8 - 18z2 + 17z4 - 7z6 + z8

Khovanov Homology:
trqj r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7
j = 19           1
j = 17          2 
j = 15         21 
j = 13        42  
j = 11       54   
j = 9      32    
j = 7     45     
j = 5    23      
j = 3   35       
j = 1  11        
j = -1  3         
j = -311          
j = -51           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
3
In[3]:=
Show[DrawMorseLink[Link[11, Alternating, 442]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, Alternating, 442]]
Out[4]=   
PD[X[6, 1, 7, 2], X[14, 3, 15, 4], X[22, 16, 13, 15], X[8, 18, 9, 17], 
 
>   X[16, 8, 17, 7], X[18, 10, 19, 9], X[20, 12, 21, 11], X[10, 20, 11, 19], 
 
>   X[12, 22, 5, 21], X[2, 5, 3, 6], X[4, 13, 1, 14]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -10, 2, -11}, {10, -1, 5, -4, 6, -8, 7, -9}, 
 
>   {11, -2, 3, -5, 4, -6, 8, -7, 9, -3}]
In[6]:=
Jones[L][q]
Out[6]=   
     -2   1            2      3      4      5      6      7      8    9
4 + q   - - - 4 q + 6 q  - 7 q  + 8 q  - 7 q  + 6 q  - 4 q  + 3 q  - q
          q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -6   2    2       2      4      6    8      10      14    16    18    20
4 + q   + -- + -- + 3 q  + 3 q  + 2 q  + q  + 3 q   + 3 q   + q   + q   + q   + 
           4    2
          q    q
 
     24    26
>   q   - q
In[8]:=
HOMFLYPT[Link[11, Alternating, 442]][a, z]
Out[8]=   
                                              2       2       2           4
    5    11    -2     1       2        2   3 z    11 z    18 z     4   4 z
6 + -- - -- + z   + ----- - ----- + 5 z  - ---- + ----- - ----- + z  - ---- + 
     4    2          4  2    2  2            6      4       2            6
    a    a          a  z    a  z            a      a       a            a
 
        4       4    6      6      6    8
    12 z    11 z    z    6 z    2 z    z
>   ----- - ----- - -- + ---- - ---- + --
      4       2      6     4      2     4
     a       a      a     a      a     a
In[9]:=
Kauffman[Link[11, Alternating, 442]][a, z]
Out[9]=   
     -8   5    13    -2     1       2      2      2    11 z   11 z       2
8 + a   + -- + -- - z   - ----- - ----- + ---- + --- - ---- - ---- - 18 z  - 
           4    2          4  2    2  2    3     a z     3     a
          a    a          a  z    a  z    a  z          a
 
       2      2      2       2       2    3       3      3      3       3
    2 z    2 z    3 z    10 z    25 z    z     3 z    2 z    6 z    12 z
>   ---- - ---- - ---- - ----- - ----- + --- - ---- - ---- + ---- + ----- + 
     10      8      6      4       2      11     9      5      3      a
    a       a      a      a       a      a      a      a      a
 
               4      4      4       4       4      5      5      5       5
        4   3 z    3 z    8 z    19 z    22 z    4 z    6 z    8 z    18 z
>   17 z  + ---- - ---- + ---- + ----- + ----- + ---- - ---- + ---- + ----- - 
             10      8      6      4       2       9      7      5      3
            a       a      a      a       a       a      a      a      a
 
              6       6       6      6      7       7       7      7
       6   4 z    11 z    13 z    5 z    4 z    10 z    18 z    4 z     8
>   7 z  + ---- - ----- - ----- - ---- + ---- - ----- - ----- - ---- + z  + 
             8      6       4       2      7      5       3      a
            a      a       a       a      a      a       a
 
       8      8      9      9    9    10    10
    4 z    3 z    3 z    4 z    z    z     z
>   ---- - ---- + ---- + ---- + -- + --- + ---
      6      2      5      3    a     4     2
     a      a      a      a          a     a
In[10]:=
Kh[L][q, t]
Out[10]=   
                                                         3
   3      5     1       1       1      3     q    q   3 q       5        7
5 q  + 2 q  + ----- + ----- + ----- + ---- + -- + - + ---- + 3 q  t + 4 q  t + 
               5  4    3  4    3  3      2    2   t    t
              q  t    q  t    q  t    q t    t
 
       7  2      9  2      9  3      11  3      11  4      13  4      13  5
>   5 q  t  + 3 q  t  + 2 q  t  + 5 q   t  + 4 q   t  + 4 q   t  + 2 q   t  + 
 
       15  5    15  6      17  6    19  7
>   2 q   t  + q   t  + 2 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11a442
L11a441
L11a441
L11a443
L11a443