© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11a419
L11a419
L11a421
L11a421
L11a420
Knotscape
This page is passe. Go here instead!

The 3-Component Link

L11a420

Visit L11a420's page at Knotilus!

Acknowledgement

L11a420 as Morse Link
DrawMorseLink

PD Presentation: X6172 X12,4,13,3 X20,11,21,12 X22,15,11,16 X14,21,15,22 X8,18,9,17 X16,8,17,7 X18,10,19,9 X10,20,5,19 X2536 X4,14,1,13

Gauss Code: {{1, -10, 2, -11}, {10, -1, 7, -6, 8, -9}, {3, -2, 11, -5, 4, -7, 6, -8, 9, -3, 5, -4}}

Jones Polynomial: - q-4 + 2q-3 - 5q-2 + 9q-1 - 11 + 15q - 14q2 + 14q3 - 10q4 + 7q5 - 3q6 + q7

A2 (sl(3)) Invariant: - q-12 - q-10 - q-8 - 3q-6 + q-4 - q-2 + 3 + 5q2 + 2q4 + 8q6 + 2q8 + 6q10 + 3q12 + q14 + 3q16 - q18 + q20

HOMFLY-PT Polynomial: 2a-4z-2 + 5a-4 + 6a-4z2 + 4a-4z4 + a-4z6 - 5a-2z-2 - 16a-2 - 21a-2z2 - 15a-2z4 - 6a-2z6 - a-2z8 + 4z-2 + 15 + 18z2 + 10z4 + 2z6 - a2z-2 - 4a2 - 4a2z2 - a2z4

Kauffman Polynomial: - a-8z2 + a-8z4 - 2a-7z3 + 3a-7z5 - 2a-6 + 6a-6z2 - 8a-6z4 + 6a-6z6 + a-5z + 2a-5z3 - 8a-5z5 + 7a-5z7 - 2a-4z-2 + 6a-4 - 9a-4z2 + 11a-4z4 - 12a-4z6 + 7a-4z8 + 5a-3z-1 - 16a-3z + 23a-3z3 - 15a-3z5 - a-3z7 + 4a-3z9 - 5a-2z-2 + 20a-2 - 39a-2z2 + 47a-2z4 - 35a-2z6 + 9a-2z8 + a-2z10 + 9a-1z-1 - 33a-1z + 39a-1z3 - 11a-1z5 - 12a-1z7 + 6a-1z9 - 4z-2 + 17 - 30z2 + 37z4 - 25z6 + 4z8 + z10 + 5az-1 - 21az + 28az3 - 12az5 - 3az7 + 2az9 - a2z-2 + 4a2 - 7a2z2 + 10a2z4 - 8a2z6 + 2a2z8 + a3z-1 - 5a3z + 8a3z3 - 5a3z5 + a3z7

Khovanov Homology:
trqj r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6
j = 15           1
j = 13          31
j = 11         4  
j = 9        63  
j = 7       84   
j = 5      77    
j = 3     87     
j = 1    59      
j = -1   46       
j = -3  15        
j = -5 14         
j = -7 1          
j = -91           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
3
In[3]:=
Show[DrawMorseLink[Link[11, Alternating, 420]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, Alternating, 420]]
Out[4]=   
PD[X[6, 1, 7, 2], X[12, 4, 13, 3], X[20, 11, 21, 12], X[22, 15, 11, 16], 
 
>   X[14, 21, 15, 22], X[8, 18, 9, 17], X[16, 8, 17, 7], X[18, 10, 19, 9], 
 
>   X[10, 20, 5, 19], X[2, 5, 3, 6], X[4, 14, 1, 13]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -10, 2, -11}, {10, -1, 7, -6, 8, -9}, 
 
>   {3, -2, 11, -5, 4, -7, 6, -8, 9, -3, 5, -4}]
In[6]:=
Jones[L][q]
Out[6]=   
       -4   2    5    9              2       3       4      5      6    7
-11 - q   + -- - -- + - + 15 q - 14 q  + 14 q  - 10 q  + 7 q  - 3 q  + q
             3    2   q
            q    q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -12    -10    -8   3     -4    -2      2      4      6      8      10
3 - q    - q    - q   - -- + q   - q   + 5 q  + 2 q  + 8 q  + 2 q  + 6 q   + 
                         6
                        q
 
       12    14      16    18    20
>   3 q   + q   + 3 q   - q   + q
In[8]:=
HOMFLYPT[Link[11, Alternating, 420]][a, z]
Out[8]=   
                                            2              2       2
     5    16      2   4      2       5     a        2   6 z    21 z
15 + -- - -- - 4 a  + -- + ----- - ----- - -- + 18 z  + ---- - ----- - 
      4    2           2    4  2    2  2    2             4      2
     a    a           z    a  z    a  z    z             a      a
 
                         4       4                   6      6    8
       2  2       4   4 z    15 z     2  4      6   z    6 z    z
>   4 a  z  + 10 z  + ---- - ----- - a  z  + 2 z  + -- - ---- - --
                        4      2                     4     2     2
                       a      a                     a     a     a
In[9]:=
Kauffman[Link[11, Alternating, 420]][a, z]
Out[9]=   
                                                 2                       3
     2    6    20      2   4      2       5     a     5      9    5 a   a
17 - -- + -- + -- + 4 a  - -- - ----- - ----- - -- + ---- + --- + --- + -- + 
      6    4    2           2    4  2    2  2    2    3     a z    z    z
     a    a    a           z    a  z    a  z    z    a  z
 
                                                  2      2      2       2
    z    16 z   33 z               3         2   z    6 z    9 z    39 z
>   -- - ---- - ---- - 21 a z - 5 a  z - 30 z  - -- + ---- - ---- - ----- - 
     5     3     a                                8     6      4      2
    a     a                                      a     a      a      a
 
                 3      3       3       3                                4
       2  2   2 z    2 z    23 z    39 z          3      3  3       4   z
>   7 a  z  - ---- + ---- + ----- + ----- + 28 a z  + 8 a  z  + 37 z  + -- - 
                7      5      3       a                                  8
               a      a      a                                          a
 
       4       4       4                 5      5       5       5
    8 z    11 z    47 z        2  4   3 z    8 z    15 z    11 z          5
>   ---- + ----- + ----- + 10 a  z  + ---- - ---- - ----- - ----- - 12 a z  - 
      6      4       2                  7      5      3       a
     a      a       a                  a      a      a
 
                         6       6       6                7    7       7
       3  5       6   6 z    12 z    35 z       2  6   7 z    z    12 z
>   5 a  z  - 25 z  + ---- - ----- - ----- - 8 a  z  + ---- - -- - ----- - 
                        6      4       2                 5     3     a
                       a      a       a                 a     a
 
                               8      8                9      9
         7    3  7      8   7 z    9 z       2  8   4 z    6 z         9
>   3 a z  + a  z  + 4 z  + ---- + ---- + 2 a  z  + ---- + ---- + 2 a z  + 
                              4      2                3     a
                             a      a                a
 
           10
     10   z
>   z   + ---
           2
          a
In[10]:=
Kh[L][q, t]
Out[10]=   
         3     1       1       1       4       1       5      4      6    5 q
9 q + 8 q  + ----- + ----- + ----- + ----- + ----- + ----- + ---- + --- + --- + 
              9  5    7  4    5  4    5  3    3  3    3  2      2   q t    t
             q  t    q  t    q  t    q  t    q  t    q  t    q t
 
       3        5        5  2      7  2      7  3      9  3      9  4
>   7 q  t + 7 q  t + 7 q  t  + 8 q  t  + 4 q  t  + 6 q  t  + 3 q  t  + 
 
       11  4      13  5    13  6    15  6
>   4 q   t  + 3 q   t  + q   t  + q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11a420
L11a419
L11a419
L11a421
L11a421