© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11a379
L11a379
L11a381
L11a381
L11a380
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11a380

Visit L11a380's page at Knotilus!

Acknowledgement

L11a380 as Morse Link
DrawMorseLink

PD Presentation: X12,1,13,2 X2,13,3,14 X14,3,15,4 X20,15,21,16 X18,6,19,5 X6,11,7,12 X22,7,11,8 X8,18,9,17 X16,10,17,9 X4,20,5,19 X10,21,1,22

Gauss Code: {{1, -2, 3, -10, 5, -6, 7, -8, 9, -11}, {6, -1, 2, -3, 4, -9, 8, -5, 10, -4, 11, -7}}

Jones Polynomial: q-17/2 - 3q-15/2 + 7q-13/2 - 12q-11/2 + 15q-9/2 - 18q-7/2 + 17q-5/2 - 15q-3/2 + 11q-1/2 - 7q1/2 + 3q3/2 - q5/2

A2 (sl(3)) Invariant: - q-26 + q-22 - 2q-20 + 3q-18 - q-16 + 3q-12 - 2q-10 + 5q-8 - q-6 + 2q-4 + 2q-2 - 2 + 2q2 - q4 + q8

HOMFLY-PT Polynomial: - 2a-1z - a-1z3 - az-1 + az + 5az3 + 2az5 + a3z-1 - 2a3z3 - 3a3z5 - a3z7 + 2a5z + 5a5z3 + 2a5z5 - 2a7z - a7z3

Kauffman Polynomial: 2a-1z - 5a-1z3 + 4a-1z5 - a-1z7 + 4z2 - 12z4 + 11z6 - 3z8 + az-1 - 2az + az3 - 8az5 + 12az7 - 4az9 - a2 + 6a2z2 - 21a2z4 + 21a2z6 - 2a2z8 - 2a2z10 + a3z-1 - 4a3z + 8a3z3 - 19a3z5 + 27a3z7 - 10a3z9 + 7a4z2 - 25a4z4 + 31a4z6 - 8a4z8 - 2a4z10 + 5a5z - 14a5z3 + 11a5z5 + 5a5z7 - 6a5z9 + a6z2 - 9a6z4 + 15a6z6 - 9a6z8 + 5a7z - 14a7z3 + 15a7z5 - 9a7z7 - 3a8z2 + 6a8z4 - 6a8z6 + 2a9z3 - 3a9z5 + a10z2 - a10z4

Khovanov Homology:
trqj r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4
j = 6           1
j = 4          2 
j = 2         51 
j = 0        62  
j = -2       95   
j = -4      97    
j = -6     98     
j = -8    710      
j = -10   58       
j = -12  27        
j = -14 15         
j = -16 2          
j = -181           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, Alternating, 380]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, Alternating, 380]]
Out[4]=   
PD[X[12, 1, 13, 2], X[2, 13, 3, 14], X[14, 3, 15, 4], X[20, 15, 21, 16], 
 
>   X[18, 6, 19, 5], X[6, 11, 7, 12], X[22, 7, 11, 8], X[8, 18, 9, 17], 
 
>   X[16, 10, 17, 9], X[4, 20, 5, 19], X[10, 21, 1, 22]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -2, 3, -10, 5, -6, 7, -8, 9, -11}, 
 
>   {6, -1, 2, -3, 4, -9, 8, -5, 10, -4, 11, -7}]
In[6]:=
Jones[L][q]
Out[6]=   
 -(17/2)     3       7      12      15     18     17     15      11
q        - ----- + ----- - ----- + ---- - ---- + ---- - ---- + ------- - 
            15/2    13/2    11/2    9/2    7/2    5/2    3/2   Sqrt[q]
           q       q       q       q      q      q      q
 
                   3/2    5/2
>   7 Sqrt[q] + 3 q    - q
In[7]:=
A2Invariant[L][q]
Out[7]=   
      -26    -22    2     3     -16    3     2    5     -6   2    2       2
-2 - q    + q    - --- + --- - q    + --- - --- + -- - q   + -- + -- + 2 q  - 
                    20    18           12    10    8          4    2
                   q     q            q     q     q          q    q
 
     4    8
>   q  + q
In[8]:=
HOMFLYPT[Link[11, Alternating, 380]][a, z]
Out[8]=   
        3                                  3
  a    a    2 z            5        7     z         3      3  3      5  3
-(-) + -- - --- + a z + 2 a  z - 2 a  z - -- + 5 a z  - 2 a  z  + 5 a  z  - 
  z    z     a                            a
 
     7  3        5      3  5      5  5    3  7
>   a  z  + 2 a z  - 3 a  z  + 2 a  z  - a  z
In[9]:=
Kauffman[Link[11, Alternating, 380]][a, z]
Out[9]=   
           3
  2   a   a    2 z              3        5        7        2      2  2
-a  + - + -- + --- - 2 a z - 4 a  z + 5 a  z + 5 a  z + 4 z  + 6 a  z  + 
      z   z     a
 
                                            3
       4  2    6  2      8  2    10  2   5 z       3      3  3       5  3
>   7 a  z  + a  z  - 3 a  z  + a   z  - ---- + a z  + 8 a  z  - 14 a  z  - 
                                          a
 
        7  3      9  3       4       2  4       4  4      6  4      8  4
>   14 a  z  + 2 a  z  - 12 z  - 21 a  z  - 25 a  z  - 9 a  z  + 6 a  z  - 
 
                5
     10  4   4 z         5       3  5       5  5       7  5      9  5       6
>   a   z  + ---- - 8 a z  - 19 a  z  + 11 a  z  + 15 a  z  - 3 a  z  + 11 z  + 
              a
 
                                                7
        2  6       4  6       6  6      8  6   z          7       3  7
>   21 a  z  + 31 a  z  + 15 a  z  - 6 a  z  - -- + 12 a z  + 27 a  z  + 
                                               a
 
       5  7      7  7      8      2  8      4  8      6  8        9
>   5 a  z  - 9 a  z  - 3 z  - 2 a  z  - 8 a  z  - 9 a  z  - 4 a z  - 
 
        3  9      5  9      2  10      4  10
>   10 a  z  - 6 a  z  - 2 a  z   - 2 a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
7    9      1        2        1        5        2        7        5
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
 4    2    18  7    16  6    14  6    14  5    12  5    12  4    10  4
q    q    q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      8        7      10       9      8      9           5 t      2      2  2
>   ------ + ----- + ----- + ----- + ---- + ---- + 6 t + --- + 2 t  + 5 q  t  + 
     10  3    8  3    8  2    6  2    6      4            2
    q   t    q  t    q  t    q  t    q  t   q  t         q
 
     2  3      4  3    6  4
>   q  t  + 2 q  t  + q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11a380
L11a379
L11a379
L11a381
L11a381