PD Presentation: |
X12,1,13,2 X2,13,3,14 X14,3,15,4 X10,15,1,16 X18,6,19,5 X6,11,7,12 X16,7,17,8 X22,17,11,18 X4,20,5,19 X8,22,9,21 X20,10,21,9 |
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... |
In[2]:= | Length[Skeleton[L]] |
Out[2]= | 2 |
In[3]:= | Show[DrawMorseLink[Link[11, Alternating, 379]]] |
|  |
Out[3]= | -Graphics- |
In[4]:= | PD[L = Link[11, Alternating, 379]] |
Out[4]= | PD[X[12, 1, 13, 2], X[2, 13, 3, 14], X[14, 3, 15, 4], X[10, 15, 1, 16],
> X[18, 6, 19, 5], X[6, 11, 7, 12], X[16, 7, 17, 8], X[22, 17, 11, 18],
> X[4, 20, 5, 19], X[8, 22, 9, 21], X[20, 10, 21, 9]] |
In[5]:= | GaussCode[L] |
Out[5]= | GaussCode[{1, -2, 3, -9, 5, -6, 7, -10, 11, -4},
> {6, -1, 2, -3, 4, -7, 8, -5, 9, -11, 10, -8}] |
In[6]:= | Jones[L][q] |
Out[6]= | -(17/2) 4 9 14 18 21 19 17 12
q - ----- + ----- - ----- + ---- - ---- + ---- - ---- + ------- -
15/2 13/2 11/2 9/2 7/2 5/2 3/2 Sqrt[q]
q q q q q q q
3/2 5/2
> 7 Sqrt[q] + 3 q - q |
In[7]:= | A2Invariant[L][q] |
Out[7]= | -26 -24 -22 3 3 2 3 2 6 -6 3 2
-3 - q + q + q - --- + --- - --- + --- - --- + -- - q + -- + -- +
20 18 16 12 10 8 4 2
q q q q q q q q
2 4 8
> 2 q - q + q |
In[8]:= | HOMFLYPT[Link[11, Alternating, 379]][a, z] |
Out[8]= | 3 3
a a 2 z 3 5 7 z 3 3 3
-(-) + -- - --- + 2 a z - a z + a z - a z - -- + 5 a z - 3 a z +
z z a a
5 3 7 3 5 3 5 5 5 3 7
> 4 a z - a z + 2 a z - 3 a z + 2 a z - a z |
In[9]:= | Kauffman[Link[11, Alternating, 379]][a, z] |
Out[9]= | 3
2 a a 2 z 3 7 2 2 2 4 2
-a + - + -- + --- - a z - 5 a z + 2 a z + 5 z + 8 a z + 6 a z -
z z a
3
8 2 5 z 3 3 3 5 3 7 3 9 3 4
> 3 a z - ---- - 2 a z + 3 a z - 11 a z - 10 a z + a z - 13 z -
a
5
2 4 4 4 6 4 8 4 10 4 4 z 5
> 27 a z - 25 a z - 2 a z + 8 a z - a z + ---- - 6 a z -
a
3 5 5 5 7 5 9 5 6 2 6 4 6
> 11 a z + 21 a z + 18 a z - 4 a z + 11 z + 26 a z + 39 a z +
7
6 6 8 6 z 7 3 7 7 7 8 2 8
> 15 a z - 9 a z - -- + 11 a z + 25 a z - 13 a z - 3 z - 4 a z -
a
4 8 6 8 9 3 9 5 9 2 10 4 10
> 13 a z - 12 a z - 4 a z - 11 a z - 7 a z - 2 a z - 2 a z |
In[10]:= | Kh[L][q, t] |
Out[10]= | 8 10 1 3 1 6 3 8 6
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + ------ +
4 2 18 7 16 6 14 6 14 5 12 5 12 4 10 4
q q q t q t q t q t q t q t q t
10 8 11 11 9 10 5 t 2 2 2
> ------ + ----- + ----- + ----- + ---- + ---- + 7 t + --- + 2 t + 5 q t +
10 3 8 3 8 2 6 2 6 4 2
q t q t q t q t q t q t q
2 3 4 3 6 4
> q t + 2 q t + q t |