© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11a363
L11a363
L11a365
L11a365
L11a364
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11a364

Visit L11a364's page at Knotilus!

Acknowledgement

L11a364 as Morse Link
DrawMorseLink

PD Presentation: X12,1,13,2 X2,13,3,14 X14,3,15,4 X4,11,5,12 X16,6,17,5 X22,16,11,15 X18,8,19,7 X20,10,21,9 X6,18,7,17 X8,20,9,19 X10,22,1,21

Gauss Code: {{1, -2, 3, -4, 5, -9, 7, -10, 8, -11}, {4, -1, 2, -3, 6, -5, 9, -7, 10, -8, 11, -6}}

Jones Polynomial: - q-5/2 + 2q-3/2 - 3q-1/2 + 4q1/2 - 6q3/2 + 6q5/2 - 7q7/2 + 6q9/2 - 5q11/2 + 3q13/2 - 2q15/2 + q17/2

A2 (sl(3)) Invariant: q-6 + q-2 + q4 + 3q8 + 2q12 + q14 + q16 + q18 - q20 - q24

HOMFLY-PT Polynomial: 6a-5z + 11a-5z3 + 6a-5z5 + a-5z7 - a-3z-1 - 12a-3z - 28a-3z3 - 23a-3z5 - 8a-3z7 - a-3z9 + a-1z-1 + 7a-1z + 11a-1z3 + 6a-1z5 + a-1z7

Kauffman Polynomial: 2a-10z2 - a-10z4 - a-9z + 4a-9z3 - 2a-9z5 - a-8z2 + 3a-8z4 - 2a-8z6 - 4a-7z3 + 4a-7z5 - 2a-7z7 + a-6z2 - 8a-6z4 + 6a-6z6 - 2a-6z8 - 5a-5z + 15a-5z3 - 18a-5z5 + 9a-5z7 - 2a-5z9 + 5a-4z2 - 5a-4z4 - a-4z6 + 3a-4z8 - a-4z10 + a-3z-1 - 14a-3z + 43a-3z3 - 45a-3z5 + 22a-3z7 - 4a-3z9 - a-2 + 5a-2z2 - 6a-2z4 + a-2z6 + 3a-2z8 - a-2z10 + a-1z-1 - 7a-1z + 14a-1z3 - 16a-1z5 + 10a-1z7 - 2a-1z9 + 4z2 - 13z4 + 10z6 - 2z8 + az - 6az3 + 5az5 - az7

Khovanov Homology:
trqj r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7
j = 18           1
j = 16          1 
j = 14         21 
j = 12        31  
j = 10       32   
j = 8      43    
j = 6     34     
j = 4    33      
j = 2   24       
j = 0  12        
j = -2 12         
j = -4 1          
j = -61           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, Alternating, 364]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, Alternating, 364]]
Out[4]=   
PD[X[12, 1, 13, 2], X[2, 13, 3, 14], X[14, 3, 15, 4], X[4, 11, 5, 12], 
 
>   X[16, 6, 17, 5], X[22, 16, 11, 15], X[18, 8, 19, 7], X[20, 10, 21, 9], 
 
>   X[6, 18, 7, 17], X[8, 20, 9, 19], X[10, 22, 1, 21]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -2, 3, -4, 5, -9, 7, -10, 8, -11}, 
 
>   {4, -1, 2, -3, 6, -5, 9, -7, 10, -8, 11, -6}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(5/2)    2        3                     3/2      5/2      7/2      9/2
-q       + ---- - ------- + 4 Sqrt[q] - 6 q    + 6 q    - 7 q    + 6 q    - 
            3/2   Sqrt[q]
           q
 
       11/2      13/2      15/2    17/2
>   5 q     + 3 q     - 2 q     + q
In[7]:=
A2Invariant[L][q]
Out[7]=   
 -6    -2    4      8      12    14    16    18    20    24
q   + q   + q  + 3 q  + 2 q   + q   + q   + q   - q   - q
In[8]:=
HOMFLYPT[Link[11, Alternating, 364]][a, z]
Out[8]=   
                                       3       3       3      5       5
   1       1    6 z   12 z   7 z   11 z    28 z    11 z    6 z    23 z
-(----) + --- + --- - ---- + --- + ----- - ----- + ----- + ---- - ----- + 
   3      a z    5      3     a      5       3       a       5      3
  a  z          a      a            a       a               a      a
 
       5    7      7    7    9
    6 z    z    8 z    z    z
>   ---- + -- - ---- + -- - --
     a      5     3    a     3
           a     a          a
In[9]:=
Kauffman[Link[11, Alternating, 364]][a, z]
Out[9]=   
                                                            2    2    2
  -2    1      1    z    5 z   14 z   7 z            2   2 z    z    z
-a   + ---- + --- - -- - --- - ---- - --- + a z + 4 z  + ---- - -- + -- + 
        3     a z    9    5      3     a                  10     8    6
       a  z         a    a      a                        a      a    a
 
       2      2      3      3       3       3       3                     4
    5 z    5 z    4 z    4 z    15 z    43 z    14 z         3       4   z
>   ---- + ---- + ---- - ---- + ----- + ----- + ----- - 6 a z  - 13 z  - --- + 
      4      2      9      7      5       3       a                       10
     a      a      a      a      a       a                               a
 
       4      4      4      4      5      5       5       5       5
    3 z    8 z    5 z    6 z    2 z    4 z    18 z    45 z    16 z         5
>   ---- - ---- - ---- - ---- - ---- + ---- - ----- - ----- - ----- + 5 a z  + 
      8      6      4      2      9      7      5       3       a
     a      a      a      a      a      a      a       a
 
               6      6    6    6      7      7       7       7
        6   2 z    6 z    z    z    2 z    9 z    22 z    10 z       7      8
>   10 z  - ---- + ---- - -- + -- - ---- + ---- + ----- + ----- - a z  - 2 z  - 
              8      6     4    2     7      5      3       a
             a      a     a    a     a      a      a
 
       8      8      8      9      9      9    10    10
    2 z    3 z    3 z    2 z    4 z    2 z    z     z
>   ---- + ---- + ---- - ---- - ---- - ---- - --- - ---
      6      4      2      5      3     a      4     2
     a      a      a      a      a            a     a
In[10]:=
Kh[L][q, t]
Out[10]=   
                                                           2
   2      4     1       1       1      -2     2     2   2 q       4
4 q  + 3 q  + ----- + ----- + ----- + t   + ----- + - + ---- + 3 q  t + 
               6  4    4  3    2  3          2  2   t    t
              q  t    q  t    q  t          q  t
 
       6        6  2      8  2      8  3      10  3      10  4      12  4
>   3 q  t + 4 q  t  + 4 q  t  + 3 q  t  + 3 q   t  + 2 q   t  + 3 q   t  + 
 
     12  5      14  5    14  6    16  6    18  7
>   q   t  + 2 q   t  + q   t  + q   t  + q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11a364
L11a363
L11a363
L11a365
L11a365