© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11a362
L11a362
L11a364
L11a364
L11a363
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11a363

Visit L11a363's page at Knotilus!

Acknowledgement

L11a363 as Morse Link
DrawMorseLink

PD Presentation: X12,1,13,2 X14,4,15,3 X22,14,11,13 X2,11,3,12 X4,22,5,21 X20,10,21,9 X16,6,17,5 X8,18,9,17 X18,8,19,7 X6,20,7,19 X10,16,1,15

Gauss Code: {{1, -4, 2, -5, 7, -10, 9, -8, 6, -11}, {4, -1, 3, -2, 11, -7, 8, -9, 10, -6, 5, -3}}

Jones Polynomial: - q-1/2 + 3q1/2 - 7q3/2 + 11q5/2 - 15q7/2 + 17q9/2 - 17q11/2 + 14q13/2 - 11q15/2 + 6q17/2 - 3q19/2 + q21/2

A2 (sl(3)) Invariant: q-2 - 1 + 3q4 - 3q6 + 2q8 - 2q12 + 3q14 - q16 + 4q18 + q20 + 4q24 - 2q26 + q30 - q32

HOMFLY-PT Polynomial: a-9z + a-9z3 - a-7z-1 - a-7z - a-7z3 - a-7z5 + a-5z-1 - 3a-5z3 - 2a-5z5 + 2a-3z - a-3z5 + a-1z + a-1z3

Kauffman Polynomial: - 2a-12z2 + 3a-12z4 - a-12z6 + 2a-11z - 8a-11z3 + 9a-11z5 - 3a-11z7 - a-10z2 - 4a-10z4 + 9a-10z6 - 4a-10z8 + 3a-9z - 6a-9z3 + 6a-9z5 + 2a-9z7 - 3a-9z9 - 5a-8z4 + 13a-8z6 - 6a-8z8 - a-8z10 + a-7z-1 - 5a-7z + 6a-7z3 - 3a-7z5 + 7a-7z7 - 6a-7z9 - a-6 + a-6z2 - 4a-6z4 + 11a-6z6 - 7a-6z8 - a-6z10 + a-5z-1 - 3a-5z - 3a-5z3 + 9a-5z5 - 3a-5z7 - 3a-5z9 - a-4z4 + 5a-4z6 - 5a-4z8 + 2a-3z - 5a-3z3 + 8a-3z5 - 5a-3z7 - 2a-2z2 + 5a-2z4 - 3a-2z6 - a-1z + 2a-1z3 - a-1z5

Khovanov Homology:
trqj r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7r = 8r = 9
j = 22           1
j = 20          2 
j = 18         41 
j = 16        72  
j = 14       85   
j = 12      96    
j = 10     88     
j = 8    79      
j = 6   48       
j = 4  37        
j = 2 15         
j = 0 2          
j = -21           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, Alternating, 363]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, Alternating, 363]]
Out[4]=   
PD[X[12, 1, 13, 2], X[14, 4, 15, 3], X[22, 14, 11, 13], X[2, 11, 3, 12], 
 
>   X[4, 22, 5, 21], X[20, 10, 21, 9], X[16, 6, 17, 5], X[8, 18, 9, 17], 
 
>   X[18, 8, 19, 7], X[6, 20, 7, 19], X[10, 16, 1, 15]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -4, 2, -5, 7, -10, 9, -8, 6, -11}, 
 
>   {4, -1, 3, -2, 11, -7, 8, -9, 10, -6, 5, -3}]
In[6]:=
Jones[L][q]
Out[6]=   
     1                      3/2       5/2       7/2       9/2       11/2
-(-------) + 3 Sqrt[q] - 7 q    + 11 q    - 15 q    + 17 q    - 17 q     + 
  Sqrt[q]
 
        13/2       15/2      17/2      19/2    21/2
>   14 q     - 11 q     + 6 q     - 3 q     + q
In[7]:=
A2Invariant[L][q]
Out[7]=   
      -2      4      6      8      12      14    16      18    20      24
-1 + q   + 3 q  - 3 q  + 2 q  - 2 q   + 3 q   - q   + 4 q   + q   + 4 q   - 
 
       26    30    32
>   2 q   + q   - q
In[8]:=
HOMFLYPT[Link[11, Alternating, 363]][a, z]
Out[8]=   
                                      3    3      3    3    5      5    5
   1       1     z    z    2 z   z   z    z    3 z    z    z    2 z    z
-(----) + ---- + -- - -- + --- + - + -- - -- - ---- + -- - -- - ---- - --
   7       5      9    7    3    a    9    7     5    a     7     5     3
  a  z    a  z   a    a    a         a    a     a          a     a     a
In[9]:=
Kauffman[Link[11, Alternating, 363]][a, z]
Out[9]=   
                                                          2    2     2      2
  -6    1      1     2 z   3 z   5 z   3 z   2 z   z   2 z    z     z    2 z
-a   + ---- + ---- + --- + --- - --- - --- + --- - - - ---- - --- + -- - ---- - 
        7      5      11    9     7     5     3    a    12     10    6     2
       a  z   a  z   a     a     a     a     a         a      a     a     a
 
       3      3      3      3      3      3      4      4      4      4    4
    8 z    6 z    6 z    3 z    5 z    2 z    3 z    4 z    5 z    4 z    z
>   ---- - ---- + ---- - ---- - ---- + ---- + ---- - ---- - ---- - ---- - -- + 
     11      9      7      5      3     a      12     10      8      6     4
    a       a      a      a      a            a      a       a      a     a
 
       4      5      5      5      5      5    5    6       6       6       6
    5 z    9 z    6 z    3 z    9 z    8 z    z    z     9 z    13 z    11 z
>   ---- + ---- + ---- - ---- + ---- + ---- - -- - --- + ---- + ----- + ----- + 
      2     11      9      7      5      3    a     12    10      8       6
     a     a       a      a      a      a          a     a       a       a
 
       6      6      7      7      7      7      7      8      8      8
    5 z    3 z    3 z    2 z    7 z    3 z    5 z    4 z    6 z    7 z
>   ---- - ---- - ---- + ---- + ---- - ---- - ---- - ---- - ---- - ---- - 
      4      2     11      9      7      5      3     10      8      6
     a      a     a       a      a      a      a     a       a      a
 
       8      9      9      9    10    10
    5 z    3 z    6 z    3 z    z     z
>   ---- - ---- - ---- - ---- - --- - ---
      4      9      7      5     8     6
     a      a      a      a     a     a
In[10]:=
Kh[L][q, t]
Out[10]=   
                           2
   2      4     1     2   q       4        6        6  2      8  2      8  3
5 q  + 3 q  + ----- + - + -- + 7 q  t + 4 q  t + 8 q  t  + 7 q  t  + 9 q  t  + 
               2  2   t   t
              q  t
 
       10  3      10  4      12  4      12  5      14  5      14  6
>   8 q   t  + 8 q   t  + 9 q   t  + 6 q   t  + 8 q   t  + 5 q   t  + 
 
       16  6      16  7      18  7    18  8      20  8    22  9
>   7 q   t  + 2 q   t  + 4 q   t  + q   t  + 2 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11a363
L11a362
L11a362
L11a364
L11a364