© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11a316
L11a316
L11a318
L11a318
L11a317
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11a317

Visit L11a317's page at Knotilus!

Acknowledgement

L11a317 as Morse Link
DrawMorseLink

PD Presentation: X10,1,11,2 X20,11,21,12 X6,9,7,10 X16,7,17,8 X8,15,1,16 X22,17,9,18 X12,4,13,3 X18,6,19,5 X4,14,5,13 X14,21,15,22 X2,20,3,19

Gauss Code: {{1, -11, 7, -9, 8, -3, 4, -5}, {3, -1, 2, -7, 9, -10, 5, -4, 6, -8, 11, -2, 10, -6}}

Jones Polynomial: q-15/2 - 4q-13/2 + 10q-11/2 - 17q-9/2 + 24q-7/2 - 29q-5/2 + 28q-3/2 - 26q-1/2 + 19q1/2 - 12q3/2 + 5q5/2 - q7/2

A2 (sl(3)) Invariant: - q-22 + 2q-20 - 3q-18 - q-16 + 3q-14 - 6q-12 + 5q-10 + 2q-6 + 6q-4 - 3q-2 + 7 - 3q2 + 3q6 - 3q8 + q10

HOMFLY-PT Polynomial: - a-1z3 - a-1z5 - 2az-1 - 3az + 2az5 + az7 + 3a3z-1 + 5a3z + 5a3z3 + 3a3z5 + a3z7 - a5z-1 - 2a5z - 2a5z3 - a5z5

Kauffman Polynomial: - a-3z5 + 3a-2z4 - 5a-2z6 - 5a-1z3 + 15a-1z5 - 12a-1z7 + 2z2 - 9z4 + 23z6 - 16z8 + 2az-1 - 5az - az3 + 9az5 + 8az7 - 12az9 - 3a2 + 8a2z2 - 29a2z4 + 48a2z6 - 19a2z8 - 4a2z10 + 3a3z-1 - 9a3z + 15a3z3 - 26a3z5 + 40a3z7 - 21a3z9 - 3a4 + 12a4z2 - 32a4z4 + 38a4z6 - 11a4z8 - 4a4z10 + a5z-1 - 4a5z + 7a5z3 - 11a5z5 + 16a5z7 - 9a5z9 - a6 + 5a6z2 - 13a6z4 + 17a6z6 - 8a6z8 - 4a7z3 + 8a7z5 - 4a7z7 - a8z2 + 2a8z4 - a8z6

Khovanov Homology:
trqj r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4
j = 8           1
j = 6          4 
j = 4         81 
j = 2        114  
j = 0       158   
j = -2      1513    
j = -4     1413     
j = -6    1015      
j = -8   714       
j = -10  310        
j = -12 17         
j = -14 3          
j = -161           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, Alternating, 317]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, Alternating, 317]]
Out[4]=   
PD[X[10, 1, 11, 2], X[20, 11, 21, 12], X[6, 9, 7, 10], X[16, 7, 17, 8], 
 
>   X[8, 15, 1, 16], X[22, 17, 9, 18], X[12, 4, 13, 3], X[18, 6, 19, 5], 
 
>   X[4, 14, 5, 13], X[14, 21, 15, 22], X[2, 20, 3, 19]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -11, 7, -9, 8, -3, 4, -5}, 
 
>   {3, -1, 2, -7, 9, -10, 5, -4, 6, -8, 11, -2, 10, -6}]
In[6]:=
Jones[L][q]
Out[6]=   
 -(15/2)     4      10      17     24     29     28      26
q        - ----- + ----- - ---- + ---- - ---- + ---- - ------- + 19 Sqrt[q] - 
            13/2    11/2    9/2    7/2    5/2    3/2   Sqrt[q]
           q       q       q      q      q      q
 
        3/2      5/2    7/2
>   12 q    + 5 q    - q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -22    2     3     -16    3     6     5    2    6    3       2      6
7 - q    + --- - --- - q    + --- - --- + --- + -- + -- - -- - 3 q  + 3 q  - 
            20    18           14    12    10    6    4    2
           q     q            q     q     q     q    q    q
 
       8    10
>   3 q  + q
In[8]:=
HOMFLYPT[Link[11, Alternating, 317]][a, z]
Out[8]=   
          3    5                              3                        5
-2 a   3 a    a               3        5     z       3  3      5  3   z
---- + ---- - -- - 3 a z + 5 a  z - 2 a  z - -- + 5 a  z  - 2 a  z  - -- + 
 z      z     z                              a                        a
 
         5      3  5    5  5      7    3  7
>   2 a z  + 3 a  z  - a  z  + a z  + a  z
In[9]:=
Kauffman[Link[11, Alternating, 317]][a, z]
Out[9]=   
                             3    5
    2      4    6   2 a   3 a    a               3        5        2
-3 a  - 3 a  - a  + --- + ---- + -- - 5 a z - 9 a  z - 4 a  z + 2 z  + 
                     z     z     z
 
                                              3
       2  2       4  2      6  2    8  2   5 z       3       3  3      5  3
>   8 a  z  + 12 a  z  + 5 a  z  - a  z  - ---- - a z  + 15 a  z  + 7 a  z  - 
                                            a
 
                        4                                               5
       7  3      4   3 z        2  4       4  4       6  4      8  4   z
>   4 a  z  - 9 z  + ---- - 29 a  z  - 32 a  z  - 13 a  z  + 2 a  z  - -- + 
                       2                                                3
                      a                                                a
 
        5                                                       6
    15 z         5       3  5       5  5      7  5       6   5 z        2  6
>   ----- + 9 a z  - 26 a  z  - 11 a  z  + 8 a  z  + 23 z  - ---- + 48 a  z  + 
      a                                                        2
                                                              a
 
                                      7
        4  6       6  6    8  6   12 z         7       3  7       5  7
>   38 a  z  + 17 a  z  - a  z  - ----- + 8 a z  + 40 a  z  + 16 a  z  - 
                                    a
 
       7  7       8       2  8       4  8      6  8         9       3  9
>   4 a  z  - 16 z  - 19 a  z  - 11 a  z  - 8 a  z  - 12 a z  - 21 a  z  - 
 
       5  9      2  10      4  10
>   9 a  z  - 4 a  z   - 4 a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
     13     1        3        1        7        3        10       7      14
15 + -- + ------ + ------ + ------ + ------ + ------ + ------ + ----- + ----- + 
      2    16  7    14  6    12  6    12  5    10  5    10  4    8  4    8  3
     q    q   t    q   t    q   t    q   t    q   t    q   t    q  t    q  t
 
     10      15      14      13     15              2        2  2      4  2
>   ----- + ----- + ----- + ---- + ---- + 8 t + 11 q  t + 4 q  t  + 8 q  t  + 
     6  3    6  2    4  2    4      2
    q  t    q  t    q  t    q  t   q  t
 
     4  3      6  3    8  4
>   q  t  + 4 q  t  + q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11a317
L11a316
L11a316
L11a318
L11a318