© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11a269
L11a269
L11a271
L11a271
L11a270
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11a270

Visit L11a270's page at Knotilus!

Acknowledgement

L11a270 as Morse Link
DrawMorseLink

PD Presentation: X10,1,11,2 X2,11,3,12 X12,3,13,4 X4,9,5,10 X14,5,15,6 X18,8,19,7 X20,15,21,16 X22,17,9,18 X16,21,17,22 X6,20,7,19 X8,13,1,14

Gauss Code: {{1, -2, 3, -4, 5, -10, 6, -11}, {4, -1, 2, -3, 11, -5, 7, -9, 8, -6, 10, -7, 9, -8}}

Jones Polynomial: q-23/2 - 3q-21/2 + 7q-19/2 - 11q-17/2 + 13q-15/2 - 15q-13/2 + 14q-11/2 - 12q-9/2 + 8q-7/2 - 5q-5/2 + 2q-3/2 - q-1/2

A2 (sl(3)) Invariant: - q-34 + q-32 - 2q-30 - q-28 + q-26 - 2q-24 + 4q-22 + 3q-18 + 3q-16 - q-14 + 3q-12 - 2q-10 + q-8 + q-6 + q-2

HOMFLY-PT Polynomial: - 4a3z - 4a3z3 - a3z5 - 2a5z-1 - a5z + 4a5z3 + 4a5z5 + a5z7 + 3a7z-1 + 6a7z + 6a7z3 + 4a7z5 + a7z7 - a9z-1 - 3a9z - 3a9z3 - a9z5

Kauffman Polynomial: 4a3z - 8a3z3 + 5a3z5 - a3z7 + 2a4z2 - 9a4z4 + 8a4z6 - 2a4z8 + 2a5z-1 - 5a5z - a5z5 + 5a5z7 - 2a5z9 - 3a6 + 8a6z2 - 14a6z4 + 13a6z6 - 2a6z8 - a6z10 + 3a7z-1 - 14a7z + 24a7z3 - 21a7z5 + 17a7z7 - 6a7z9 - 3a8 + 14a8z2 - 21a8z4 + 22a8z6 - 7a8z8 - a8z10 + a9z-1 - 2a9z + 3a9z3 + a9z5 + 3a9z7 - 4a9z9 - a10 + 3a10z2 - 8a10z4 + 11a10z6 - 7a10z8 + 3a11z - 11a11z3 + 13a11z5 - 8a11z7 - 4a12z2 + 7a12z4 - 6a12z6 + 2a13z3 - 3a13z5 + a14z2 - a14z4

Khovanov Homology:
trqj r = -9r = -8r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2
j = 0           1
j = -2          1 
j = -4         41 
j = -6        52  
j = -8       73   
j = -10      75    
j = -12     87     
j = -14    68      
j = -16   57       
j = -18  26        
j = -20 15         
j = -22 2          
j = -241           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, Alternating, 270]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, Alternating, 270]]
Out[4]=   
PD[X[10, 1, 11, 2], X[2, 11, 3, 12], X[12, 3, 13, 4], X[4, 9, 5, 10], 
 
>   X[14, 5, 15, 6], X[18, 8, 19, 7], X[20, 15, 21, 16], X[22, 17, 9, 18], 
 
>   X[16, 21, 17, 22], X[6, 20, 7, 19], X[8, 13, 1, 14]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -2, 3, -4, 5, -10, 6, -11}, 
 
>   {4, -1, 2, -3, 11, -5, 7, -9, 8, -6, 10, -7, 9, -8}]
In[6]:=
Jones[L][q]
Out[6]=   
 -(23/2)     3       7      11      13      15      14      12     8      5
q        - ----- + ----- - ----- + ----- - ----- + ----- - ---- + ---- - ---- + 
            21/2    19/2    17/2    15/2    13/2    11/2    9/2    7/2    5/2
           q       q       q       q       q       q       q      q      q
 
     2        1
>   ---- - -------
     3/2   Sqrt[q]
    q
In[7]:=
A2Invariant[L][q]
Out[7]=   
  -34    -32    2     -28    -26    2     4     3     3     -14    3     2
-q    + q    - --- - q    + q    - --- + --- + --- + --- - q    + --- - --- + 
                30                  24    22    18    16           12    10
               q                   q     q     q     q            q     q
 
     -8    -6    -2
>   q   + q   + q
In[8]:=
HOMFLYPT[Link[11, Alternating, 270]][a, z]
Out[8]=   
    5      7    9
-2 a    3 a    a       3      5        7        9        3  3      5  3
----- + ---- - -- - 4 a  z - a  z + 6 a  z - 3 a  z - 4 a  z  + 4 a  z  + 
  z      z     z
 
       7  3      9  3    3  5      5  5      7  5    9  5    5  7    7  7
>   6 a  z  - 3 a  z  - a  z  + 4 a  z  + 4 a  z  - a  z  + a  z  + a  z
In[9]:=
Kauffman[Link[11, Alternating, 270]][a, z]
Out[9]=   
                        5      7    9
    6      8    10   2 a    3 a    a       3        5         7        9
-3 a  - 3 a  - a   + ---- + ---- + -- + 4 a  z - 5 a  z - 14 a  z - 2 a  z + 
                      z      z     z
 
       11        4  2      6  2       8  2      10  2      12  2    14  2
>   3 a   z + 2 a  z  + 8 a  z  + 14 a  z  + 3 a   z  - 4 a   z  + a   z  - 
 
       3  3       7  3      9  3       11  3      13  3      4  4       6  4
>   8 a  z  + 24 a  z  + 3 a  z  - 11 a   z  + 2 a   z  - 9 a  z  - 14 a  z  - 
 
        8  4      10  4      12  4    14  4      3  5    5  5       7  5
>   21 a  z  - 8 a   z  + 7 a   z  - a   z  + 5 a  z  - a  z  - 21 a  z  + 
 
     9  5       11  5      13  5      4  6       6  6       8  6       10  6
>   a  z  + 13 a   z  - 3 a   z  + 8 a  z  + 13 a  z  + 22 a  z  + 11 a   z  - 
 
       12  6    3  7      5  7       7  7      9  7      11  7      4  8
>   6 a   z  - a  z  + 5 a  z  + 17 a  z  + 3 a  z  - 8 a   z  - 2 a  z  - 
 
       6  8      8  8      10  8      5  9      7  9      9  9    6  10    8  10
>   2 a  z  - 7 a  z  - 7 a   z  - 2 a  z  - 6 a  z  - 4 a  z  - a  z   - a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
2    4      1        2        1        5        2        6        5
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
 6    4    24  9    22  8    20  8    20  7    18  7    18  6    16  6
q    q    q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      7        6        8        8        7        7        5        7
>   ------ + ------ + ------ + ------ + ------ + ------ + ------ + ----- + 
     16  5    14  5    14  4    12  4    12  3    10  3    10  2    8  2
    q   t    q   t    q   t    q   t    q   t    q   t    q   t    q  t
 
     3      5     t    t     2
>   ---- + ---- + -- + -- + t
     8      6      4    2
    q  t   q  t   q    q


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11a270
L11a269
L11a269
L11a271
L11a271