© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11a268
L11a268
L11a270
L11a270
L11a269
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11a269

Visit L11a269's page at Knotilus!

Acknowledgement

L11a269 as Morse Link
DrawMorseLink

PD Presentation: X10,1,11,2 X2,11,3,12 X12,3,13,4 X4,9,5,10 X14,5,15,6 X22,20,9,19 X18,7,19,8 X6,17,7,18 X16,22,17,21 X20,16,21,15 X8,13,1,14

Gauss Code: {{1, -2, 3, -4, 5, -8, 7, -11}, {4, -1, 2, -3, 11, -5, 10, -9, 8, -7, 6, -10, 9, -6}}

Jones Polynomial: - q-19/2 + 3q-17/2 - 8q-15/2 + 12q-13/2 - 16q-11/2 + 18q-9/2 - 18q-7/2 + 15q-5/2 - 11q-3/2 + 6q-1/2 - 3q1/2 + q3/2

A2 (sl(3)) Invariant: q-28 - q-26 + 3q-24 + 2q-22 + 5q-18 - 2q-16 + 2q-14 - q-12 - 2q-10 + 3q-8 - 3q-6 + 3q-4 - 1 + q2 - q4

HOMFLY-PT Polynomial: 2az + 3az3 + az5 + a3z-1 - 3a3z - 6a3z3 - 4a3z5 - a3z7 - 3a5z-1 - 7a5z - 7a5z3 - 4a5z5 - a5z7 + 2a7z-1 + 4a7z + 3a7z3 + a7z5

Kauffman Polynomial: - 2z2 + 3z4 - z6 + 2az - 8az3 + 9az5 - 3az7 - a2 + a2z2 - 5a2z4 + 9a2z6 - 4a2z8 + a3z-1 + 2a3z - 9a3z3 + 9a3z5 + a3z7 - 3a3z9 - 3a4 + 13a4z2 - 22a4z4 + 22a4z6 - 8a4z8 - a4z10 + 3a5z-1 - 12a5z + 15a5z3 - 9a5z5 + 10a5z7 - 7a5z9 - 3a6 + 9a6z2 - 17a6z4 + 21a6z6 - 10a6z8 - a6z10 + 2a7z-1 - 6a7z + 4a7z3 + 3a7z5 - 4a7z9 - 2a8z2 + a8z4 + 6a8z6 - 6a8z8 + 5a9z - 10a9z3 + 11a9z5 - 6a9z7 - a10z2 + 4a10z4 - 3a10z6 - a11z + 2a11z3 - a11z5

Khovanov Homology:
trqj r = -8r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3
j = 4           1
j = 2          2 
j = 0         41 
j = -2        72  
j = -4       95   
j = -6      96    
j = -8     99     
j = -10    79      
j = -12   59       
j = -14  37        
j = -16  5         
j = -1813          
j = -201           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, Alternating, 269]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, Alternating, 269]]
Out[4]=   
PD[X[10, 1, 11, 2], X[2, 11, 3, 12], X[12, 3, 13, 4], X[4, 9, 5, 10], 
 
>   X[14, 5, 15, 6], X[22, 20, 9, 19], X[18, 7, 19, 8], X[6, 17, 7, 18], 
 
>   X[16, 22, 17, 21], X[20, 16, 21, 15], X[8, 13, 1, 14]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -2, 3, -4, 5, -8, 7, -11}, 
 
>   {4, -1, 2, -3, 11, -5, 10, -9, 8, -7, 6, -10, 9, -6}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(19/2)     3       8      12      16      18     18     15     11
-q        + ----- - ----- + ----- - ----- + ---- - ---- + ---- - ---- + 
             17/2    15/2    13/2    11/2    9/2    7/2    5/2    3/2
            q       q       q       q       q      q      q      q
 
       6                   3/2
>   ------- - 3 Sqrt[q] + q
    Sqrt[q]
In[7]:=
A2Invariant[L][q]
Out[7]=   
      -28    -26    3     2     5     2     2     -12    2    3    3    3
-1 + q    - q    + --- + --- + --- - --- + --- - q    - --- + -- - -- + -- + 
                    24    22    18    16    14           10    8    6    4
                   q     q     q     q     q            q     q    q    q
 
     2    4
>   q  - q
In[8]:=
HOMFLYPT[Link[11, Alternating, 269]][a, z]
Out[8]=   
 3      5      7
a    3 a    2 a               3        5        7          3      3  3
-- - ---- + ---- + 2 a z - 3 a  z - 7 a  z + 4 a  z + 3 a z  - 6 a  z  - 
z     z      z
 
       5  3      7  3      5      3  5      5  5    7  5    3  7    5  7
>   7 a  z  + 3 a  z  + a z  - 4 a  z  - 4 a  z  + a  z  - a  z  - a  z
In[9]:=
Kauffman[Link[11, Alternating, 269]][a, z]
Out[9]=   
                     3      5      7
  2      4      6   a    3 a    2 a               3         5        7
-a  - 3 a  - 3 a  + -- + ---- + ---- + 2 a z + 2 a  z - 12 a  z - 6 a  z + 
                    z     z      z
 
       9      11        2    2  2       4  2      6  2      8  2    10  2
>   5 a  z - a   z - 2 z  + a  z  + 13 a  z  + 9 a  z  - 2 a  z  - a   z  - 
 
         3      3  3       5  3      7  3       9  3      11  3      4
>   8 a z  - 9 a  z  + 15 a  z  + 4 a  z  - 10 a  z  + 2 a   z  + 3 z  - 
 
       2  4       4  4       6  4    8  4      10  4        5      3  5
>   5 a  z  - 22 a  z  - 17 a  z  + a  z  + 4 a   z  + 9 a z  + 9 a  z  - 
 
       5  5      7  5       9  5    11  5    6      2  6       4  6
>   9 a  z  + 3 a  z  + 11 a  z  - a   z  - z  + 9 a  z  + 22 a  z  + 
 
        6  6      8  6      10  6        7    3  7       5  7      9  7
>   21 a  z  + 6 a  z  - 3 a   z  - 3 a z  + a  z  + 10 a  z  - 6 a  z  - 
 
       2  8      4  8       6  8      8  8      3  9      5  9      7  9
>   4 a  z  - 8 a  z  - 10 a  z  - 6 a  z  - 3 a  z  - 7 a  z  - 4 a  z  - 
 
     4  10    6  10
>   a  z   - a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
5    7      1        1        3        5        3        7        5
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
 4    2    20  8    18  8    18  7    16  6    14  6    14  5    12  5
q    q    q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      9        7        9        9       9       9      6      9
>   ------ + ------ + ------ + ----- + ----- + ----- + ---- + ---- + 4 t + 
     12  4    10  4    10  3    8  3    8  2    6  2    6      4
    q   t    q   t    q   t    q  t    q  t    q  t    q  t   q  t
 
    2 t    2      2  2    4  3
>   --- + t  + 2 q  t  + q  t
     2
    q


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11a269
L11a268
L11a268
L11a270
L11a270