© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11a26
L11a26
L11a28
L11a28
L11a27
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11a27

Visit L11a27's page at Knotilus!

Acknowledgement

L11a27 as Morse Link
DrawMorseLink

PD Presentation: X6172 X10,3,11,4 X16,13,17,14 X14,7,15,8 X8,15,9,16 X20,11,21,12 X22,18,5,17 X18,22,19,21 X12,19,13,20 X2536 X4,9,1,10

Gauss Code: {{1, -10, 2, -11}, {10, -1, 4, -5, 11, -2, 6, -9, 3, -4, 5, -3, 7, -8, 9, -6, 8, -7}}

Jones Polynomial: q-21/2 - 3q-19/2 + 7q-17/2 - 12q-15/2 + 16q-13/2 - 19q-11/2 + 18q-9/2 - 17q-7/2 + 12q-5/2 - 7q-3/2 + 3q-1/2 - q1/2

A2 (sl(3)) Invariant: - q-34 - 2q-32 + q-30 - 2q-26 + 5q-24 + 3q-18 - 2q-16 + 4q-14 - q-12 + 2q-10 + 3q-8 - 4q-6 + 3q-4 - 1 + q2

HOMFLY-PT Polynomial: - az - az3 - a3z-1 - a3z + a3z5 + 2a5z-1 + 3a5z + 3a5z3 + 2a5z5 - 3a7z-1 - 7a7z - 5a7z3 + 3a9z-1 + 4a9z - a11z-1

Kauffman Polynomial: - az + 2az3 - az5 - 2a2z2 + 5a2z4 - 3a2z6 - a3z-1 + 3a3z - 4a3z3 + 7a3z5 - 5a3z7 + a4z2 - 5a4z4 + 8a4z6 - 6a4z8 - 2a5z-1 + 11a5z - 20a5z3 + 15a5z5 - 2a5z7 - 4a5z9 - 2a6 + 11a6z2 - 27a6z4 + 29a6z6 - 12a6z8 - a6z10 - 3a7z-1 + 17a7z - 31a7z3 + 21a7z5 + 3a7z7 - 7a7z9 + 5a8z2 - 17a8z4 + 25a8z6 - 10a8z8 - a8z10 - 3a9z-1 + 13a9z - 24a9z3 + 22a9z5 - 3a9z7 - 3a9z9 + 2a10 - 6a10z2 + 3a10z4 + 6a10z6 - 4a10z8 - a11z-1 + 3a11z - 7a11z3 + 8a11z5 - 3a11z7 + a12 - 3a12z2 + 3a12z4 - a12z6

Khovanov Homology:
trqj r = -9r = -8r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2
j = 2           1
j = 0          2 
j = -2         51 
j = -4        83  
j = -6       94   
j = -8      98    
j = -10     109     
j = -12    710      
j = -14   59       
j = -16  27        
j = -18 15         
j = -20 2          
j = -221           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, Alternating, 27]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, Alternating, 27]]
Out[4]=   
PD[X[6, 1, 7, 2], X[10, 3, 11, 4], X[16, 13, 17, 14], X[14, 7, 15, 8], 
 
>   X[8, 15, 9, 16], X[20, 11, 21, 12], X[22, 18, 5, 17], X[18, 22, 19, 21], 
 
>   X[12, 19, 13, 20], X[2, 5, 3, 6], X[4, 9, 1, 10]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -10, 2, -11}, {10, -1, 4, -5, 11, -2, 6, -9, 3, -4, 5, -3, 7, -8, 
 
>    9, -6, 8, -7}]
In[6]:=
Jones[L][q]
Out[6]=   
 -(21/2)     3       7      12      16      19      18     17     12     7
q        - ----- + ----- - ----- + ----- - ----- + ---- - ---- + ---- - ---- + 
            19/2    17/2    15/2    13/2    11/2    9/2    7/2    5/2    3/2
           q       q       q       q       q       q      q      q      q
 
       3
>   ------- - Sqrt[q]
    Sqrt[q]
In[7]:=
A2Invariant[L][q]
Out[7]=   
      -34    2     -30    2     5     3     2     4     -12    2    3    4
-1 - q    - --- + q    - --- + --- + --- - --- + --- - q    + --- + -- - -- + 
             32           26    24    18    16    14           10    8    6
            q            q     q     q     q     q            q     q    q
 
    3     2
>   -- + q
     4
    q
In[8]:=
HOMFLYPT[Link[11, Alternating, 27]][a, z]
Out[8]=   
   3       5      7      9    11
  a     2 a    3 a    3 a    a            3        5        7        9
-(--) + ---- - ---- + ---- - --- - a z - a  z + 3 a  z - 7 a  z + 4 a  z - 
  z      z      z      z      z
 
       3      5  3      7  3    3  5      5  5
>   a z  + 3 a  z  - 5 a  z  + a  z  + 2 a  z
In[9]:=
Kauffman[Link[11, Alternating, 27]][a, z]
Out[9]=   
                       3      5      7      9    11
    6      10    12   a    2 a    3 a    3 a    a              3         5
-2 a  + 2 a   + a   - -- - ---- - ---- - ---- - --- - a z + 3 a  z + 11 a  z + 
                      z     z      z      z      z
 
        7         9        11        2  2    4  2       6  2      8  2
>   17 a  z + 13 a  z + 3 a   z - 2 a  z  + a  z  + 11 a  z  + 5 a  z  - 
 
       10  2      12  2        3      3  3       5  3       7  3       9  3
>   6 a   z  - 3 a   z  + 2 a z  - 4 a  z  - 20 a  z  - 31 a  z  - 24 a  z  - 
 
       11  3      2  4      4  4       6  4       8  4      10  4      12  4
>   7 a   z  + 5 a  z  - 5 a  z  - 27 a  z  - 17 a  z  + 3 a   z  + 3 a   z  - 
 
       5      3  5       5  5       7  5       9  5      11  5      2  6
>   a z  + 7 a  z  + 15 a  z  + 21 a  z  + 22 a  z  + 8 a   z  - 3 a  z  + 
 
       4  6       6  6       8  6      10  6    12  6      3  7      5  7
>   8 a  z  + 29 a  z  + 25 a  z  + 6 a   z  - a   z  - 5 a  z  - 2 a  z  + 
 
       7  7      9  7      11  7      4  8       6  8       8  8      10  8
>   3 a  z  - 3 a  z  - 3 a   z  - 6 a  z  - 12 a  z  - 10 a  z  - 4 a   z  - 
 
       5  9      7  9      9  9    6  10    8  10
>   4 a  z  - 7 a  z  - 3 a  z  - a  z   - a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
3    5      1        2        1        5        2        7        5
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
 4    2    22  9    20  8    18  8    18  7    16  7    16  6    14  6
q    q    q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      9        7        10       10       9        9       8       9      4
>   ------ + ------ + ------ + ------ + ------ + ----- + ----- + ----- + ---- + 
     14  5    12  5    12  4    10  4    10  3    8  3    8  2    6  2    6
    q   t    q   t    q   t    q   t    q   t    q  t    q  t    q  t    q  t
 
     8           t     2  2
>   ---- + 2 t + -- + q  t
     4            2
    q  t         q


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11a27
L11a26
L11a26
L11a28
L11a28