© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11a221
L11a221
L11a223
L11a223
L11a222
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11a222

Visit L11a222's page at Knotilus!

Acknowledgement

L11a222 as Morse Link
DrawMorseLink

PD Presentation: X8192 X12,4,13,3 X22,10,7,9 X20,12,21,11 X10,22,11,21 X16,6,17,5 X18,16,19,15 X14,20,15,19 X2738 X4,14,5,13 X6,18,1,17

Gauss Code: {{1, -9, 2, -10, 6, -11}, {9, -1, 3, -5, 4, -2, 10, -8, 7, -6, 11, -7, 8, -4, 5, -3}}

Jones Polynomial: - q-1/2 + 2q1/2 - 6q3/2 + 9q5/2 - 13q7/2 + 15q9/2 - 15q11/2 + 13q13/2 - 10q15/2 + 6q17/2 - 3q19/2 + q21/2

A2 (sl(3)) Invariant: q-2 + q2 + 4q4 - q6 + 3q8 + q10 - 2q12 + 2q14 - 2q16 + 2q18 - q22 + 3q24 - 2q26 + q30 - q32

HOMFLY-PT Polynomial: a-9z + a-9z3 - a-7z3 - a-7z5 - 2a-5z - 4a-5z3 - 2a-5z5 - a-3z-1 - a-3z3 - a-3z5 + a-1z-1 + 2a-1z + a-1z3

Kauffman Polynomial: - 2a-12z2 + 3a-12z4 - a-12z6 + a-11z - 7a-11z3 + 9a-11z5 - 3a-11z7 + a-10z2 - 6a-10z4 + 10a-10z6 - 4a-10z8 + a-9z5 + 4a-9z7 - 3a-9z9 - a-8z2 - 2a-8z4 + 9a-8z6 - 4a-8z8 - a-8z10 + 2a-7z3 - 4a-7z5 + 7a-7z7 - 5a-7z9 - 5a-6z2 + 6a-6z4 + a-6z6 - 3a-6z8 - a-6z10 + 2a-5z - 7a-5z3 + 8a-5z5 - 3a-5z7 - 2a-5z9 - a-4z2 + 2a-4z4 + a-4z6 - 3a-4z8 + a-3z-1 - 2a-3z + a-3z3 + 3a-3z5 - 3a-3z7 - a-2 + 3a-2z4 - 2a-2z6 + a-1z-1 - 3a-1z + 3a-1z3 - a-1z5

Khovanov Homology:
trqj r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7r = 8r = 9
j = 22           1
j = 20          2 
j = 18         41 
j = 16        62  
j = 14       74   
j = 12      86    
j = 10     77     
j = 8    68      
j = 6   48       
j = 4  25        
j = 2 15         
j = 0 1          
j = -21           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, Alternating, 222]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, Alternating, 222]]
Out[4]=   
PD[X[8, 1, 9, 2], X[12, 4, 13, 3], X[22, 10, 7, 9], X[20, 12, 21, 11], 
 
>   X[10, 22, 11, 21], X[16, 6, 17, 5], X[18, 16, 19, 15], X[14, 20, 15, 19], 
 
>   X[2, 7, 3, 8], X[4, 14, 5, 13], X[6, 18, 1, 17]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -9, 2, -10, 6, -11}, 
 
>   {9, -1, 3, -5, 4, -2, 10, -8, 7, -6, 11, -7, 8, -4, 5, -3}]
In[6]:=
Jones[L][q]
Out[6]=   
     1                      3/2      5/2       7/2       9/2       11/2
-(-------) + 2 Sqrt[q] - 6 q    + 9 q    - 13 q    + 15 q    - 15 q     + 
  Sqrt[q]
 
        13/2       15/2      17/2      19/2    21/2
>   13 q     - 10 q     + 6 q     - 3 q     + q
In[7]:=
A2Invariant[L][q]
Out[7]=   
 -2    2      4    6      8    10      12      14      16      18    22
q   + q  + 4 q  - q  + 3 q  + q   - 2 q   + 2 q   - 2 q   + 2 q   - q   + 
 
       24      26    30    32
>   3 q   - 2 q   + q   - q
In[8]:=
HOMFLYPT[Link[11, Alternating, 222]][a, z]
Out[8]=   
                                  3    3      3    3    3    5      5    5
   1       1    z    2 z   2 z   z    z    4 z    z    z    z    2 z    z
-(----) + --- + -- - --- + --- + -- - -- - ---- - -- + -- - -- - ---- - --
   3      a z    9    5     a     9    7     5     3   a     7     5     3
  a  z          a    a           a    a     a     a         a     a     a
In[9]:=
Kauffman[Link[11, Alternating, 222]][a, z]
Out[9]=   
                                               2    2     2      2    2
  -2    1      1     z    2 z   2 z   3 z   2 z    z     z    5 z    z
-a   + ---- + --- + --- + --- - --- - --- - ---- + --- - -- - ---- - -- - 
        3     a z    11    5     3     a     12     10    8     6     4
       a  z         a     a     a           a      a     a     a     a
 
       3      3      3    3      3      4      4      4      4      4      4
    7 z    2 z    7 z    z    3 z    3 z    6 z    2 z    6 z    2 z    3 z
>   ---- + ---- - ---- + -- + ---- + ---- - ---- - ---- + ---- + ---- + ---- + 
     11      7      5     3    a      12     10      8      6      4      2
    a       a      a     a           a      a       a      a      a      a
 
       5    5      5      5      5    5    6        6      6    6    6      6
    9 z    z    4 z    8 z    3 z    z    z     10 z    9 z    z    z    2 z
>   ---- + -- - ---- + ---- + ---- - -- - --- + ----- + ---- + -- + -- - ---- - 
     11     9     7      5      3    a     12     10      8     6    4     2
    a      a     a      a      a          a      a       a     a    a     a
 
       7      7      7      7      7      8      8      8      8      9
    3 z    4 z    7 z    3 z    3 z    4 z    4 z    3 z    3 z    3 z
>   ---- + ---- + ---- - ---- - ---- - ---- - ---- - ---- - ---- - ---- - 
     11      9      7      5      3     10      8      6      4      9
    a       a      a      a      a     a       a      a      a      a
 
       9      9    10    10
    5 z    2 z    z     z
>   ---- - ---- - --- - ---
      7      5     8     6
     a      a     a     a
In[10]:=
Kh[L][q, t]
Out[10]=   
                           2
   2      4     1     1   q       4        6        6  2      8  2      8  3
5 q  + 2 q  + ----- + - + -- + 5 q  t + 4 q  t + 8 q  t  + 6 q  t  + 8 q  t  + 
               2  2   t   t
              q  t
 
       10  3      10  4      12  4      12  5      14  5      14  6
>   7 q   t  + 7 q   t  + 8 q   t  + 6 q   t  + 7 q   t  + 4 q   t  + 
 
       16  6      16  7      18  7    18  8      20  8    22  9
>   6 q   t  + 2 q   t  + 4 q   t  + q   t  + 2 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11a222
L11a221
L11a221
L11a223
L11a223