PD Presentation: |
X8192 X12,3,13,4 X16,6,17,5 X20,13,21,14 X18,15,19,16 X14,19,15,20 X22,10,7,9 X4,18,5,17 X10,22,11,21 X2738 X6,11,1,12 |
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... |
In[2]:= | Length[Skeleton[L]] |
Out[2]= | 2 |
In[3]:= | Show[DrawMorseLink[Link[11, Alternating, 221]]] |
|  |
Out[3]= | -Graphics- |
In[4]:= | PD[L = Link[11, Alternating, 221]] |
Out[4]= | PD[X[8, 1, 9, 2], X[12, 3, 13, 4], X[16, 6, 17, 5], X[20, 13, 21, 14],
> X[18, 15, 19, 16], X[14, 19, 15, 20], X[22, 10, 7, 9], X[4, 18, 5, 17],
> X[10, 22, 11, 21], X[2, 7, 3, 8], X[6, 11, 1, 12]] |
In[5]:= | GaussCode[L] |
Out[5]= | GaussCode[{1, -10, 2, -8, 3, -11},
> {10, -1, 7, -9, 11, -2, 4, -6, 5, -3, 8, -5, 6, -4, 9, -7}] |
In[6]:= | Jones[L][q] |
Out[6]= | -(15/2) 3 6 10 13 16 15 14
q - ----- + ----- - ---- + ---- - ---- + ---- - ------- + 10 Sqrt[q] -
13/2 11/2 9/2 7/2 5/2 3/2 Sqrt[q]
q q q q q q
3/2 5/2 7/2
> 6 q + 3 q - q |
In[7]:= | A2Invariant[L][q] |
Out[7]= | -24 2 2 -16 2 3 3 -8 2 3 -2 2
4 - q + --- - --- + q + --- - --- + --- + q + -- + -- - q - 2 q -
20 18 14 12 10 6 4
q q q q q q q
4 6 8 12
> q + 2 q - 2 q + q |
In[8]:= | HOMFLYPT[Link[11, Alternating, 221]][a, z] |
Out[8]= | 3 3
a a z z 5 7 2 z 5 3 5 3 5
-(-) + -- - -- + - - a z + a z - a z + ---- + 2 a z - a z - a z
z z 3 a a
a |
In[9]:= | Kauffman[Link[11, Alternating, 221]][a, z] |
Out[9]= | 3 2
2 a a z 3 5 7 2 3 z 2 2
-a + - + -- - -- - a z - 3 a z + a z + 2 a z - z - ---- + 5 a z +
z z 3 2
a a
3
4 2 6 2 8 2 2 z 3 3 5 3 7 3 4
> 7 a z + 2 a z - 2 a z + ---- + 3 a z - 6 a z - 7 a z + 2 z +
3
a
4 5 5
6 z 2 4 4 4 6 4 8 4 z 5 z 5
> ---- - 15 a z - 20 a z - 6 a z + 3 a z - -- + ---- + a z -
2 3 a
a a
6
3 5 5 5 7 5 6 3 z 2 6 4 6
> 8 a z + 6 a z + 9 a z + 3 z - ---- + 15 a z + 20 a z +
2
a
7
6 6 8 6 4 z 7 3 7 5 7 7 7 8
> 10 a z - a z - ---- + a z + 11 a z + 3 a z - 3 a z - 4 z -
a
2 8 4 8 6 8 9 3 9 5 9 2 10 4 10
> 6 a z - 6 a z - 4 a z - 3 a z - 6 a z - 3 a z - a z - a z |
In[10]:= | Kh[L][q, t] |
Out[10]= | 7 1 2 1 4 2 6 4 7
8 + -- + ------ + ------ + ------ + ------ + ------ + ------ + ----- + ----- +
2 16 7 14 6 12 6 12 5 10 5 10 4 8 4 8 3
q q t q t q t q t q t q t q t q t
6 9 8 7 8 2 2 2 4 2
> ----- + ----- + ----- + ---- + ---- + 4 t + 6 q t + 2 q t + 4 q t +
6 3 6 2 4 2 4 2
q t q t q t q t q t
4 3 6 3 8 4
> q t + 2 q t + q t |