© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11a202
L11a202
L11a204
L11a204
L11a203
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11a203

Visit L11a203's page at Knotilus!

Acknowledgement

L11a203 as Morse Link
DrawMorseLink

PD Presentation: X8192 X2,9,3,10 X10,3,11,4 X6718 X18,11,19,12 X16,6,17,5 X4,18,5,17 X22,15,7,16 X12,21,13,22 X20,13,21,14 X14,19,15,20

Gauss Code: {{1, -2, 3, -7, 6, -4}, {4, -1, 2, -3, 5, -9, 10, -11, 8, -6, 7, -5, 11, -10, 9, -8}}

Jones Polynomial: q-23/2 - 2q-21/2 + 4q-19/2 - 7q-17/2 + 9q-15/2 - 10q-13/2 + 10q-11/2 - 9q-9/2 + 6q-7/2 - 5q-5/2 + 2q-3/2 - q-1/2

A2 (sl(3)) Invariant: - q-34 - q-30 - q-28 + q-26 - q-24 + 2q-22 - q-20 + 2q-16 + 4q-12 + q-10 + 2q-8 + q-6 + q-2

HOMFLY-PT Polynomial: - a3z-1 - 4a3z - 4a3z3 - a3z5 - a5z + 3a5z3 + 4a5z5 + a5z7 + 2a7z-1 + 8a7z + 9a7z3 + 5a7z5 + a7z7 - a9z-1 - 4a9z - 4a9z3 - a9z5

Kauffman Polynomial: - a3z-1 + 5a3z - 8a3z3 + 5a3z5 - a3z7 + a4 - a4z2 - 7a4z4 + 8a4z6 - 2a4z8 - a5z - 3a5z3 - a5z5 + 6a5z7 - 2a5z9 - 3a6 + 10a6z2 - 14a6z4 + 10a6z6 - a6z10 + 2a7z-1 - 12a7z + 29a7z3 - 31a7z5 + 20a7z7 - 5a7z9 - 5a8 + 25a8z2 - 31a8z4 + 17a8z6 - 2a8z8 - a8z10 + a9z-1 - 4a9z + 9a9z3 - 13a9z5 + 9a9z7 - 3a9z9 - 2a10 + 9a10z2 - 18a10z4 + 12a10z6 - 4a10z8 + 2a11z - 12a11z3 + 10a11z5 - 4a11z7 - 3a12z2 + 5a12z4 - 3a12z6 + 3a13z3 - 2a13z5 + 2a14z2 - a14z4

Khovanov Homology:
trqj r = -9r = -8r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2
j = 0           1
j = -2          1 
j = -4         41 
j = -6        32  
j = -8       63   
j = -10      54    
j = -12     55     
j = -14    45      
j = -16   35       
j = -18  14        
j = -20 13         
j = -22 1          
j = -241           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, Alternating, 203]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, Alternating, 203]]
Out[4]=   
PD[X[8, 1, 9, 2], X[2, 9, 3, 10], X[10, 3, 11, 4], X[6, 7, 1, 8], 
 
>   X[18, 11, 19, 12], X[16, 6, 17, 5], X[4, 18, 5, 17], X[22, 15, 7, 16], 
 
>   X[12, 21, 13, 22], X[20, 13, 21, 14], X[14, 19, 15, 20]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -2, 3, -7, 6, -4}, 
 
>   {4, -1, 2, -3, 5, -9, 10, -11, 8, -6, 7, -5, 11, -10, 9, -8}]
In[6]:=
Jones[L][q]
Out[6]=   
 -(23/2)     2       4       7       9      10      10      9      6      5
q        - ----- + ----- - ----- + ----- - ----- + ----- - ---- + ---- - ---- + 
            21/2    19/2    17/2    15/2    13/2    11/2    9/2    7/2    5/2
           q       q       q       q       q       q       q      q      q
 
     2        1
>   ---- - -------
     3/2   Sqrt[q]
    q
In[7]:=
A2Invariant[L][q]
Out[7]=   
  -34    -30    -28    -26    -24    2     -20    2     4     -10   2     -6
-q    - q    - q    + q    - q    + --- - q    + --- + --- + q    + -- + q   + 
                                     22           16    12           8
                                    q            q     q            q
 
     -2
>   q
In[8]:=
HOMFLYPT[Link[11, Alternating, 203]][a, z]
Out[8]=   
   3       7    9
  a     2 a    a       3      5        7        9        3  3      5  3
-(--) + ---- - -- - 4 a  z - a  z + 8 a  z - 4 a  z - 4 a  z  + 3 a  z  + 
  z      z     z
 
       7  3      9  3    3  5      5  5      7  5    9  5    5  7    7  7
>   9 a  z  - 4 a  z  - a  z  + 4 a  z  + 5 a  z  - a  z  + a  z  + a  z
In[9]:=
Kauffman[Link[11, Alternating, 203]][a, z]
Out[9]=   
                            3      7    9
 4      6      8      10   a    2 a    a       3      5         7        9
a  - 3 a  - 5 a  - 2 a   - -- + ---- + -- + 5 a  z - a  z - 12 a  z - 4 a  z + 
                           z     z     z
 
       11      4  2       6  2       8  2      10  2      12  2      14  2
>   2 a   z - a  z  + 10 a  z  + 25 a  z  + 9 a   z  - 3 a   z  + 2 a   z  - 
 
       3  3      5  3       7  3      9  3       11  3      13  3      4  4
>   8 a  z  - 3 a  z  + 29 a  z  + 9 a  z  - 12 a   z  + 3 a   z  - 7 a  z  - 
 
        6  4       8  4       10  4      12  4    14  4      3  5    5  5
>   14 a  z  - 31 a  z  - 18 a   z  + 5 a   z  - a   z  + 5 a  z  - a  z  - 
 
        7  5       9  5       11  5      13  5      4  6       6  6
>   31 a  z  - 13 a  z  + 10 a   z  - 2 a   z  + 8 a  z  + 10 a  z  + 
 
        8  6       10  6      12  6    3  7      5  7       7  7      9  7
>   17 a  z  + 12 a   z  - 3 a   z  - a  z  + 6 a  z  + 20 a  z  + 9 a  z  - 
 
       11  7      4  8      8  8      10  8      5  9      7  9      9  9
>   4 a   z  - 2 a  z  - 2 a  z  - 4 a   z  - 2 a  z  - 5 a  z  - 3 a  z  - 
 
     6  10    8  10
>   a  z   - a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
2    4      1        1        1        3        1        4        3
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
 6    4    24  9    22  8    20  8    20  7    18  7    18  6    16  6
q    q    q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      5        4        5        5        5        5        4        6
>   ------ + ------ + ------ + ------ + ------ + ------ + ------ + ----- + 
     16  5    14  5    14  4    12  4    12  3    10  3    10  2    8  2
    q   t    q   t    q   t    q   t    q   t    q   t    q   t    q  t
 
     3      3     t    t     2
>   ---- + ---- + -- + -- + t
     8      6      4    2
    q  t   q  t   q    q


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11a203
L11a202
L11a202
L11a204
L11a204