© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11a188
L11a188
L11a190
L11a190
L11a189
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11a189

Visit L11a189's page at Knotilus!

Acknowledgement

L11a189 as Morse Link
DrawMorseLink

PD Presentation: X8192 X10,3,11,4 X16,6,17,5 X18,11,19,12 X22,15,7,16 X12,21,13,22 X20,13,21,14 X14,19,15,20 X4,18,5,17 X2738 X6,9,1,10

Gauss Code: {{1, -10, 2, -9, 3, -11}, {10, -1, 11, -2, 4, -6, 7, -8, 5, -3, 9, -4, 8, -7, 6, -5}}

Jones Polynomial: q-21/2 - 2q-19/2 + 5q-17/2 - 9q-15/2 + 12q-13/2 - 15q-11/2 + 15q-9/2 - 14q-7/2 + 10q-5/2 - 7q-3/2 + 3q-1/2 - q1/2

A2 (sl(3)) Invariant: - q-32 - q-28 - 3q-26 + 2q-24 - q-22 + 4q-18 + 4q-14 + q-10 + 3q-8 - 2q-6 + 3q-4 - 1 + q2

HOMFLY-PT Polynomial: - az - az3 - a3z-1 - 3a3z + a3z5 + 2a5z + 4a5z3 + 2a5z5 + 2a7z-1 + 3a7z + 2a7z3 + a7z5 - a9z-1 - 2a9z - a9z3

Kauffman Polynomial: - az + 2az3 - az5 - a2z2 + 5a2z4 - 3a2z6 - a3z-1 + 5a3z - 6a3z3 + 9a3z5 - 5a3z7 + a4 - a4z2 - 2a4z4 + 7a4z6 - 5a4z8 + 3a5z - 13a5z3 + 11a5z5 - a5z7 - 3a5z9 - 3a6 + 9a6z2 - 20a6z4 + 17a6z6 - 6a6z8 - a6z10 + 2a7z-1 - 10a7z + 19a7z3 - 22a7z5 + 15a7z7 - 6a7z9 - 5a8 + 22a8z2 - 28a8z4 + 17a8z6 - 4a8z8 - a8z10 + a9z-1 - 7a9z + 20a9z3 - 17a9z5 + 9a9z7 - 3a9z9 - 2a10 + 9a10z2 - 11a10z4 + 9a10z6 - 3a10z8 - 4a11z3 + 6a11z5 - 2a11z7 - 4a12z2 + 4a12z4 - a12z6

Khovanov Homology:
trqj r = -9r = -8r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2
j = 2           1
j = 0          2 
j = -2         51 
j = -4        63  
j = -6       84   
j = -8      87    
j = -10     77     
j = -12    58      
j = -14   47       
j = -16  15        
j = -18 14         
j = -20 1          
j = -221           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, Alternating, 189]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, Alternating, 189]]
Out[4]=   
PD[X[8, 1, 9, 2], X[10, 3, 11, 4], X[16, 6, 17, 5], X[18, 11, 19, 12], 
 
>   X[22, 15, 7, 16], X[12, 21, 13, 22], X[20, 13, 21, 14], X[14, 19, 15, 20], 
 
>   X[4, 18, 5, 17], X[2, 7, 3, 8], X[6, 9, 1, 10]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -10, 2, -9, 3, -11}, 
 
>   {10, -1, 11, -2, 4, -6, 7, -8, 5, -3, 9, -4, 8, -7, 6, -5}]
In[6]:=
Jones[L][q]
Out[6]=   
 -(21/2)     2       5       9      12      15      15     14     10     7
q        - ----- + ----- - ----- + ----- - ----- + ---- - ---- + ---- - ---- + 
            19/2    17/2    15/2    13/2    11/2    9/2    7/2    5/2    3/2
           q       q       q       q       q       q      q      q      q
 
       3
>   ------- - Sqrt[q]
    Sqrt[q]
In[7]:=
A2Invariant[L][q]
Out[7]=   
      -32    -28    3     2     -22    4     4     -10   3    2    3     2
-1 - q    - q    - --- + --- - q    + --- + --- + q    + -- - -- + -- + q
                    26    24           18    14           8    6    4
                   q     q            q     q            q    q    q
In[8]:=
HOMFLYPT[Link[11, Alternating, 189]][a, z]
Out[8]=   
   3       7    9
  a     2 a    a             3        5        7        9        3      5  3
-(--) + ---- - -- - a z - 3 a  z + 2 a  z + 3 a  z - 2 a  z - a z  + 4 a  z  + 
  z      z     z
 
       7  3    9  3    3  5      5  5    7  5
>   2 a  z  - a  z  + a  z  + 2 a  z  + a  z
In[9]:=
Kauffman[Link[11, Alternating, 189]][a, z]
Out[9]=   
                            3      7    9
 4      6      8      10   a    2 a    a             3        5         7
a  - 3 a  - 5 a  - 2 a   - -- + ---- + -- - a z + 5 a  z + 3 a  z - 10 a  z - 
                           z     z     z
 
       9      2  2    4  2      6  2       8  2      10  2      12  2
>   7 a  z - a  z  - a  z  + 9 a  z  + 22 a  z  + 9 a   z  - 4 a   z  + 
 
         3      3  3       5  3       7  3       9  3      11  3      2  4
>   2 a z  - 6 a  z  - 13 a  z  + 19 a  z  + 20 a  z  - 4 a   z  + 5 a  z  - 
 
       4  4       6  4       8  4       10  4      12  4      5      3  5
>   2 a  z  - 20 a  z  - 28 a  z  - 11 a   z  + 4 a   z  - a z  + 9 a  z  + 
 
        5  5       7  5       9  5      11  5      2  6      4  6       6  6
>   11 a  z  - 22 a  z  - 17 a  z  + 6 a   z  - 3 a  z  + 7 a  z  + 17 a  z  + 
 
        8  6      10  6    12  6      3  7    5  7       7  7      9  7
>   17 a  z  + 9 a   z  - a   z  - 5 a  z  - a  z  + 15 a  z  + 9 a  z  - 
 
       11  7      4  8      6  8      8  8      10  8      5  9      7  9
>   2 a   z  - 5 a  z  - 6 a  z  - 4 a  z  - 3 a   z  - 3 a  z  - 6 a  z  - 
 
       9  9    6  10    8  10
>   3 a  z  - a  z   - a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
3    5      1        1        1        4        1        5        4
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
 4    2    22  9    20  8    18  8    18  7    16  7    16  6    14  6
q    q    q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      7        5        8        7        7        8       7       8      4
>   ------ + ------ + ------ + ------ + ------ + ----- + ----- + ----- + ---- + 
     14  5    12  5    12  4    10  4    10  3    8  3    8  2    6  2    6
    q   t    q   t    q   t    q   t    q   t    q  t    q  t    q  t    q  t
 
     6           t     2  2
>   ---- + 2 t + -- + q  t
     4            2
    q  t         q


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11a189
L11a188
L11a188
L11a190
L11a190