© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11a187
L11a187
L11a189
L11a189
L11a188
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11a188

Visit L11a188's page at Knotilus!

Acknowledgement

L11a188 as Morse Link
DrawMorseLink

PD Presentation: X8192 X10,3,11,4 X16,6,17,5 X18,11,19,12 X20,13,21,14 X22,15,7,16 X12,19,13,20 X14,21,15,22 X4,18,5,17 X2738 X6,9,1,10

Gauss Code: {{1, -10, 2, -9, 3, -11}, {10, -1, 11, -2, 4, -7, 5, -8, 6, -3, 9, -4, 7, -5, 8, -6}}

Jones Polynomial: q-23/2 - 2q-21/2 + 4q-19/2 - 6q-17/2 + 8q-15/2 - 9q-13/2 + 8q-11/2 - 8q-9/2 + 5q-7/2 - 4q-5/2 + 2q-3/2 - q-1/2

A2 (sl(3)) Invariant: - q-34 - q-30 - 2q-28 - q-26 - 2q-24 + 2q-22 + q-20 + 3q-18 + 4q-16 + q-14 + 3q-12 + q-8 + q-2

HOMFLY-PT Polynomial: - 3a3z - 4a3z3 - a3z5 - 3a5z-1 - 4a5z + 2a5z3 + 4a5z5 + a5z7 + 5a7z-1 + 10a7z + 9a7z3 + 5a7z5 + a7z7 - 2a9z-1 - 4a9z - 4a9z3 - a9z5

Kauffman Polynomial: 3a3z - 7a3z3 + 5a3z5 - a3z7 + 2a4z2 - 10a4z4 + 9a4z6 - 2a4z8 + 3a5z-1 - 10a5z + 9a5z3 - 9a5z5 + 8a5z7 - 2a5z9 - 5a6 + 15a6z2 - 18a6z4 + 9a6z6 + a6z8 - a6z10 + 5a7z-1 - 25a7z + 53a7z3 - 50a7z5 + 25a7z7 - 5a7z9 - 5a8 + 22a8z2 - 25a8z4 + 11a8z6 - a8z10 + 2a9z-1 - 12a9z + 28a9z3 - 28a9z5 + 13a9z7 - 3a9z9 + 2a10z2 - 10a10z4 + 8a10z6 - 3a10z8 - 6a11z3 + 6a11z5 - 3a11z7 + a12 - 5a12z2 + 6a12z4 - 3a12z6 + 3a13z3 - 2a13z5 + 2a14z2 - a14z4

Khovanov Homology:
trqj r = -9r = -8r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2
j = 0           1
j = -2          1 
j = -4         31 
j = -6        32  
j = -8       52   
j = -10      44    
j = -12     54     
j = -14    34      
j = -16   35       
j = -18  13        
j = -20 13         
j = -22 1          
j = -241           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, Alternating, 188]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, Alternating, 188]]
Out[4]=   
PD[X[8, 1, 9, 2], X[10, 3, 11, 4], X[16, 6, 17, 5], X[18, 11, 19, 12], 
 
>   X[20, 13, 21, 14], X[22, 15, 7, 16], X[12, 19, 13, 20], X[14, 21, 15, 22], 
 
>   X[4, 18, 5, 17], X[2, 7, 3, 8], X[6, 9, 1, 10]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -10, 2, -9, 3, -11}, 
 
>   {10, -1, 11, -2, 4, -7, 5, -8, 6, -3, 9, -4, 7, -5, 8, -6}]
In[6]:=
Jones[L][q]
Out[6]=   
 -(23/2)     2       4       6       8       9       8      8      5      4
q        - ----- + ----- - ----- + ----- - ----- + ----- - ---- + ---- - ---- + 
            21/2    19/2    17/2    15/2    13/2    11/2    9/2    7/2    5/2
           q       q       q       q       q       q       q      q      q
 
     2        1
>   ---- - -------
     3/2   Sqrt[q]
    q
In[7]:=
A2Invariant[L][q]
Out[7]=   
  -34    -30    2     -26    2     2     -20    3     4     -14    3     -8
-q    - q    - --- - q    - --- + --- + q    + --- + --- + q    + --- + q   + 
                28           24    22           18    16           12
               q            q     q            q     q            q
 
     -2
>   q
In[8]:=
HOMFLYPT[Link[11, Alternating, 188]][a, z]
Out[8]=   
    5      7      9
-3 a    5 a    2 a       3        5         7        9        3  3      5  3
----- + ---- - ---- - 3 a  z - 4 a  z + 10 a  z - 4 a  z - 4 a  z  + 2 a  z  + 
  z      z      z
 
       7  3      9  3    3  5      5  5      7  5    9  5    5  7    7  7
>   9 a  z  - 4 a  z  - a  z  + 4 a  z  + 5 a  z  - a  z  + a  z  + a  z
In[9]:=
Kauffman[Link[11, Alternating, 188]][a, z]
Out[9]=   
                        5      7      9
    6      8    12   3 a    5 a    2 a       3         5         7
-5 a  - 5 a  + a   + ---- + ---- + ---- + 3 a  z - 10 a  z - 25 a  z - 
                      z      z      z
 
        9        4  2       6  2       8  2      10  2      12  2      14  2
>   12 a  z + 2 a  z  + 15 a  z  + 22 a  z  + 2 a   z  - 5 a   z  + 2 a   z  - 
 
       3  3      5  3       7  3       9  3      11  3      13  3       4  4
>   7 a  z  + 9 a  z  + 53 a  z  + 28 a  z  - 6 a   z  + 3 a   z  - 10 a  z  - 
 
        6  4       8  4       10  4      12  4    14  4      3  5      5  5
>   18 a  z  - 25 a  z  - 10 a   z  + 6 a   z  - a   z  + 5 a  z  - 9 a  z  - 
 
        7  5       9  5      11  5      13  5      4  6      6  6       8  6
>   50 a  z  - 28 a  z  + 6 a   z  - 2 a   z  + 9 a  z  + 9 a  z  + 11 a  z  + 
 
       10  6      12  6    3  7      5  7       7  7       9  7      11  7
>   8 a   z  - 3 a   z  - a  z  + 8 a  z  + 25 a  z  + 13 a  z  - 3 a   z  - 
 
       4  8    6  8      10  8      5  9      7  9      9  9    6  10    8  10
>   2 a  z  + a  z  - 3 a   z  - 2 a  z  - 5 a  z  - 3 a  z  - a  z   - a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
2    3      1        1        1        3        1        3        3
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
 6    4    24  9    22  8    20  8    20  7    18  7    18  6    16  6
q    q    q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      5        3        4        5        4        4        4        5
>   ------ + ------ + ------ + ------ + ------ + ------ + ------ + ----- + 
     16  5    14  5    14  4    12  4    12  3    10  3    10  2    8  2
    q   t    q   t    q   t    q   t    q   t    q   t    q   t    q  t
 
     2      3     t    t     2
>   ---- + ---- + -- + -- + t
     8      6      4    2
    q  t   q  t   q    q


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11a188
L11a187
L11a187
L11a189
L11a189