© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11a15
L11a15
L11a17
L11a17
L11a16
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11a16

Visit L11a16's page at Knotilus!

Acknowledgement

L11a16 as Morse Link
DrawMorseLink

PD Presentation: X6172 X16,7,17,8 X4,17,1,18 X14,6,15,5 X8493 X18,10,19,9 X20,12,21,11 X22,14,5,13 X10,20,11,19 X12,22,13,21 X2,16,3,15

Gauss Code: {{1, -11, 5, -3}, {4, -1, 2, -5, 6, -9, 7, -10, 8, -4, 11, -2, 3, -6, 9, -7, 10, -8}}

Jones Polynomial: q-1/2 - 3q1/2 + 3q3/2 - 6q5/2 + 6q7/2 - 8q9/2 + 8q11/2 - 7q13/2 + 6q15/2 - 4q17/2 + 3q19/2 - q21/2

A2 (sl(3)) Invariant: - 1 + q2 + q4 + 3q6 + 4q8 + 3q10 + 4q12 + 2q16 - 2q18 - 2q20 - 2q22 - 2q24 - q28 + q30

HOMFLY-PT Polynomial: 2a-7z-1 - 6a-7z3 - 5a-7z5 - a-7z7 - 5a-5z-1 - 3a-5z + 12a-5z3 + 16a-5z5 + 7a-5z7 + a-5z9 + 3a-3z-1 + 3a-3z - 5a-3z3 - 5a-3z5 - a-3z7

Kauffman Polynomial: - a-13z3 + 2a-12z2 - 3a-12z4 + 3a-11z3 - 4a-11z5 - a-10 + 2a-10z2 + 3a-10z4 - 4a-10z6 + 6a-9z5 - 4a-9z7 - 4a-8z4 + 10a-8z6 - 4a-8z8 - 2a-7z-1 - a-7z + 12a-7z3 - 20a-7z5 + 16a-7z7 - 4a-7z9 + 5a-6 - 4a-6z2 - 6a-6z4 + a-6z6 + 6a-6z8 - 2a-6z10 - 5a-5z-1 + a-5z + 35a-5z3 - 63a-5z5 + 38a-5z7 - 7a-5z9 + 5a-4 - 3a-4z2 - 2a-4z4 - 8a-4z6 + 9a-4z8 - 2a-4z10 - 3a-3z-1 + 2a-3z + 19a-3z3 - 33a-3z5 + 18a-3z7 - 3a-3z9 + a-2z2 - 6a-2z4 + 5a-2z6 - a-2z8

Khovanov Homology:
trqj r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7r = 8
j = 22           1
j = 20          2 
j = 18         21 
j = 16        42  
j = 14       32   
j = 12      54    
j = 10     33     
j = 8    35      
j = 6   33       
j = 4  25        
j = 2 11         
j = 0 2          
j = -21           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, Alternating, 16]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, Alternating, 16]]
Out[4]=   
PD[X[6, 1, 7, 2], X[16, 7, 17, 8], X[4, 17, 1, 18], X[14, 6, 15, 5], 
 
>   X[8, 4, 9, 3], X[18, 10, 19, 9], X[20, 12, 21, 11], X[22, 14, 5, 13], 
 
>   X[10, 20, 11, 19], X[12, 22, 13, 21], X[2, 16, 3, 15]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -11, 5, -3}, {4, -1, 2, -5, 6, -9, 7, -10, 8, -4, 11, -2, 3, -6, 
 
>    9, -7, 10, -8}]
In[6]:=
Jones[L][q]
Out[6]=   
   1                     3/2      5/2      7/2      9/2      11/2      13/2
------- - 3 Sqrt[q] + 3 q    - 6 q    + 6 q    - 8 q    + 8 q     - 7 q     + 
Sqrt[q]
 
       15/2      17/2      19/2    21/2
>   6 q     - 4 q     + 3 q     - q
In[7]:=
A2Invariant[L][q]
Out[7]=   
      2    4      6      8      10      12      16      18      20      22
-1 + q  + q  + 3 q  + 4 q  + 3 q   + 4 q   + 2 q   - 2 q   - 2 q   - 2 q   - 
 
       24    28    30
>   2 q   - q   + q
In[8]:=
HOMFLYPT[Link[11, Alternating, 16]][a, z]
Out[8]=   
                                    3       3      3      5       5      5
 2      5      3     3 z   3 z   6 z    12 z    5 z    5 z    16 z    5 z
---- - ---- + ---- - --- + --- - ---- + ----- - ---- - ---- + ----- - ---- - 
 7      5      3      5     3      7      5       3      7      5       3
a  z   a  z   a  z   a     a      a      a       a      a      a       a
 
     7      7    7    9
    z    7 z    z    z
>   -- + ---- - -- + --
     7     5     3    5
    a     a     a    a
In[9]:=
Kauffman[Link[11, Alternating, 16]][a, z]
Out[9]=   
                                                          2      2      2
  -10   5    5     2      5      3     z    z    2 z   2 z    2 z    4 z
-a    + -- + -- - ---- - ---- - ---- - -- + -- + --- + ---- + ---- - ---- - 
         6    4    7      5      3      7    5    3     12     10      6
        a    a    a  z   a  z   a  z   a    a    a     a      a       a
 
       2    2    3       3       3       3       3      4      4      4
    3 z    z    z     3 z    12 z    35 z    19 z    3 z    3 z    4 z
>   ---- + -- - --- + ---- + ----- + ----- + ----- - ---- + ---- - ---- - 
      4     2    13    11      7       5       3      12     10      8
     a     a    a     a       a       a       a      a      a       a
 
       4      4      4      5      5       5       5       5      6       6
    6 z    2 z    6 z    4 z    6 z    20 z    63 z    33 z    4 z    10 z
>   ---- - ---- - ---- - ---- + ---- - ----- - ----- - ----- - ---- + ----- + 
      6      4      2     11      9      7       5       3      10      8
     a      a      a     a       a      a       a       a      a       a
 
     6      6      6      7       7       7       7      8      8      8    8
    z    8 z    5 z    4 z    16 z    38 z    18 z    4 z    6 z    9 z    z
>   -- - ---- + ---- - ---- + ----- + ----- + ----- - ---- + ---- + ---- - -- - 
     6     4      2      9      7       5       3       8      6      4     2
    a     a      a      a      a       a       a       a      a      a     a
 
       9      9      9      10      10
    4 z    7 z    3 z    2 z     2 z
>   ---- - ---- - ---- - ----- - -----
      7      5      3      6       4
     a      a      a      a       a
In[10]:=
Kh[L][q, t]
Out[10]=   
                            2    2      4
   4      6     1     2    q    q    2 q       6        8        8  2
5 q  + 3 q  + ----- + -- + -- + -- + ---- + 3 q  t + 3 q  t + 5 q  t  + 
               2  3    2    2   t     t
              q  t    t    t
 
       10  2      10  3      12  3      12  4      14  4      14  5
>   3 q   t  + 3 q   t  + 5 q   t  + 4 q   t  + 3 q   t  + 2 q   t  + 
 
       16  5      16  6      18  6    18  7      20  7    22  8
>   4 q   t  + 2 q   t  + 2 q   t  + q   t  + 2 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11a16
L11a15
L11a15
L11a17
L11a17