© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11a14
L11a14
L11a16
L11a16
L11a15
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11a15

Visit L11a15's page at Knotilus!

Acknowledgement

L11a15 as Morse Link
DrawMorseLink

PD Presentation: X6172 X12,7,13,8 X4,13,1,14 X18,10,19,9 X8493 X14,6,15,5 X22,16,5,15 X20,18,21,17 X16,22,17,21 X10,20,11,19 X2,12,3,11

Gauss Code: {{1, -11, 5, -3}, {6, -1, 2, -5, 4, -10, 11, -2, 3, -6, 7, -9, 8, -4, 10, -8, 9, -7}}

Jones Polynomial: q-5/2 - 3q-3/2 + 5q-1/2 - 9q1/2 + 11q3/2 - 14q5/2 + 13q7/2 - 12q9/2 + 9q11/2 - 6q13/2 + 4q15/2 - q17/2

A2 (sl(3)) Invariant: - q-8 + q-6 - q-2 + 4 + q4 + 3q6 + q8 + 4q10 + q12 + q14 + q16 - 4q18 - q22 - 2q24 + q26

HOMFLY-PT Polynomial: a-7z-1 - a-7z3 - 2a-5z-1 - a-5z + a-5z3 + a-5z5 - a-3z + a-3z5 + a-1z-1 + 3a-1z + 2a-1z3 + a-1z5 - az - az3

Kauffman Polynomial: - a-9z3 + 3a-9z5 - a-9z7 + 2a-8 + a-8z2 - 15a-8z4 + 16a-8z6 - 4a-8z8 - a-7z-1 + 6a-7z3 - 21a-7z5 + 20a-7z7 - 5a-7z9 + 5a-6 - a-6z2 - 24a-6z4 + 21a-6z6 - 2a-6z10 - 2a-5z-1 + a-5z + 13a-5z3 - 36a-5z5 + 33a-5z7 - 9a-5z9 + 3a-4 - 2a-4z2 - 9a-4z4 + 11a-4z6 - 2a-4z10 - 2a-3z + 9a-3z3 - 9a-3z5 + 8a-3z7 - 4a-3z9 - a-2 - a-2z2 + 4a-2z4 + 2a-2z6 - 4a-2z8 + a-1z-1 - 5a-1z + 7a-1z3 - 4a-1z7 + 3z4 - 4z6 - 2az + 4az3 - 3az5 + a2z2 - a2z4

Khovanov Homology:
trqj r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7r = 8
j = 18           1
j = 16          3 
j = 14         31 
j = 12        63  
j = 10       63   
j = 8      76    
j = 6     76     
j = 4    47      
j = 2   57       
j = 0  26        
j = -2 13         
j = -4 2          
j = -61           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, Alternating, 15]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, Alternating, 15]]
Out[4]=   
PD[X[6, 1, 7, 2], X[12, 7, 13, 8], X[4, 13, 1, 14], X[18, 10, 19, 9], 
 
>   X[8, 4, 9, 3], X[14, 6, 15, 5], X[22, 16, 5, 15], X[20, 18, 21, 17], 
 
>   X[16, 22, 17, 21], X[10, 20, 11, 19], X[2, 12, 3, 11]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -11, 5, -3}, {6, -1, 2, -5, 4, -10, 11, -2, 3, -6, 7, -9, 8, -4, 
 
>    10, -8, 9, -7}]
In[6]:=
Jones[L][q]
Out[6]=   
 -(5/2)    3        5                      3/2       5/2       7/2       9/2
q       - ---- + ------- - 9 Sqrt[q] + 11 q    - 14 q    + 13 q    - 12 q    + 
           3/2   Sqrt[q]
          q
 
       11/2      13/2      15/2    17/2
>   9 q     - 6 q     + 4 q     - q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -8    -6    -2    4      6    8      10    12    14    16      18    22
4 - q   + q   - q   + q  + 3 q  + q  + 4 q   + q   + q   + q   - 4 q   - q   - 
 
       24    26
>   2 q   + q
In[8]:=
HOMFLYPT[Link[11, Alternating, 15]][a, z]
Out[8]=   
                                           3    3      3           5    5    5
 1      2      1    z    z    3 z         z    z    2 z       3   z    z    z
---- - ---- + --- - -- - -- + --- - a z - -- + -- + ---- - a z  + -- + -- + --
 7      5     a z    5    3    a           7    5    a             5    3   a
a  z   a  z         a    a                a    a                  a    a
In[9]:=
Kauffman[Link[11, Alternating, 15]][a, z]
Out[9]=   
                                                                   2    2
2    5    3     -2    1      2      1    z    2 z   5 z           z    z
-- + -- + -- - a   - ---- - ---- + --- + -- - --- - --- - 2 a z + -- - -- - 
 8    6    4          7      5     a z    5    3     a             8    6
a    a    a          a  z   a  z         a    a                   a    a
 
       2    2            3      3       3      3      3
    2 z    z     2  2   z    6 z    13 z    9 z    7 z         3      4
>   ---- - -- + a  z  - -- + ---- + ----- + ---- + ---- + 4 a z  + 3 z  - 
      4     2            9     7      5       3     a
     a     a            a     a      a       a
 
        4       4      4      4              5       5       5      5
    15 z    24 z    9 z    4 z     2  4   3 z    21 z    36 z    9 z
>   ----- - ----- - ---- + ---- - a  z  + ---- - ----- - ----- - ---- - 
      8       6       4      2              9      7       5       3
     a       a       a      a              a      a       a       a
 
                        6       6       6      6    7       7       7      7
         5      6   16 z    21 z    11 z    2 z    z    20 z    33 z    8 z
>   3 a z  - 4 z  + ----- + ----- + ----- + ---- - -- + ----- + ----- + ---- - 
                      8       6       4       2     9     7       5       3
                     a       a       a       a     a     a       a       a
 
       7      8      8      9      9      9      10      10
    4 z    4 z    4 z    5 z    9 z    4 z    2 z     2 z
>   ---- - ---- - ---- - ---- - ---- - ---- - ----- - -----
     a       8      2      7      5      3      6       4
            a      a      a      a      a      a       a
In[10]:=
Kh[L][q, t]
Out[10]=   
       2     1       2       1     2    3        2        4        4  2
6 + 5 q  + ----- + ----- + ----- + - + ---- + 7 q  t + 4 q  t + 7 q  t  + 
            6  3    4  2    2  2   t    2
           q  t    q  t    q  t        q  t
 
       6  2      6  3      8  3      8  4      10  4      10  5      12  5
>   7 q  t  + 6 q  t  + 7 q  t  + 6 q  t  + 6 q   t  + 3 q   t  + 6 q   t  + 
 
       12  6      14  6    14  7      16  7    18  8
>   3 q   t  + 3 q   t  + q   t  + 3 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11a15
L11a14
L11a14
L11a16
L11a16