© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11a141
L11a141
L11a143
L11a143
L11a142
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11a142

Visit L11a142's page at Knotilus!

Acknowledgement

L11a142 as Morse Link
DrawMorseLink

PD Presentation: X8192 X18,11,19,12 X10,4,11,3 X2,17,3,18 X12,5,13,6 X6718 X16,10,17,9 X20,16,21,15 X22,14,7,13 X14,22,15,21 X4,20,5,19

Gauss Code: {{1, -4, 3, -11, 5, -6}, {6, -1, 7, -3, 2, -5, 9, -10, 8, -7, 4, -2, 11, -8, 10, -9}}

Jones Polynomial: q-11/2 - 4q-9/2 + 8q-7/2 - 14q-5/2 + 18q-3/2 - 21q-1/2 + 20q1/2 - 18q3/2 + 13q5/2 - 8q7/2 + 4q9/2 - q11/2

A2 (sl(3)) Invariant: - q-16 + 2q-14 - q-12 + q-10 + 4q-8 - 2q-6 + 5q-4 - q-2 + 1 + 2q2 - 3q4 + 4q6 - 2q8 + q12 - 2q14 + q16

HOMFLY-PT Polynomial: - 2a-3z3 - a-3z5 + 2a-1z3 + 3a-1z5 + a-1z7 - az-1 - az + 2az3 + 3az5 + az7 + a3z-1 - 2a3z3 - a3z5

Kauffman Polynomial: - 2a-5z3 + 3a-5z5 - a-5z7 + 4a-4z2 - 14a-4z4 + 14a-4z6 - 4a-4z8 + 6a-3z3 - 19a-3z5 + 20a-3z7 - 6a-3z9 + 12a-2z2 - 37a-2z4 + 31a-2z6 - 2a-2z8 - 3a-2z10 + 8a-1z3 - 35a-1z5 + 44a-1z7 - 15a-1z9 + 12z2 - 44z4 + 48z6 - 11z8 - 3z10 + az-1 - az - 8az3 + 7az5 + 11az7 - 9az9 - a2 + 4a2z2 - 14a2z4 + 23a2z6 - 13a2z8 + a3z-1 - a3z - 6a3z3 + 16a3z5 - 12a3z7 + 6a4z4 - 8a4z6 + 2a5z3 - 4a5z5 - a6z4

Khovanov Homology:
trqj r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6
j = 12           1
j = 10          3 
j = 8         51 
j = 6        83  
j = 4       105   
j = 2      108    
j = 0     1110     
j = -2    811      
j = -4   610       
j = -6  39        
j = -8 15         
j = -10 3          
j = -121           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, Alternating, 142]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, Alternating, 142]]
Out[4]=   
PD[X[8, 1, 9, 2], X[18, 11, 19, 12], X[10, 4, 11, 3], X[2, 17, 3, 18], 
 
>   X[12, 5, 13, 6], X[6, 7, 1, 8], X[16, 10, 17, 9], X[20, 16, 21, 15], 
 
>   X[22, 14, 7, 13], X[14, 22, 15, 21], X[4, 20, 5, 19]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -4, 3, -11, 5, -6}, 
 
>   {6, -1, 7, -3, 2, -5, 9, -10, 8, -7, 4, -2, 11, -8, 10, -9}]
In[6]:=
Jones[L][q]
Out[6]=   
 -(11/2)    4      8      14     18      21                       3/2
q        - ---- + ---- - ---- + ---- - ------- + 20 Sqrt[q] - 18 q    + 
            9/2    7/2    5/2    3/2   Sqrt[q]
           q      q      q      q
 
        5/2      7/2      9/2    11/2
>   13 q    - 8 q    + 4 q    - q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -16    2     -12    -10   4    2    5     -2      2      4      6      8
1 - q    + --- - q    + q    + -- - -- + -- - q   + 2 q  - 3 q  + 4 q  - 2 q  + 
            14                  8    6    4
           q                   q    q    q
 
     12      14    16
>   q   - 2 q   + q
In[8]:=
HOMFLYPT[Link[11, Alternating, 142]][a, z]
Out[8]=   
        3            3      3                       5      5
  a    a          2 z    2 z         3      3  3   z    3 z         5    3  5
-(-) + -- - a z - ---- + ---- + 2 a z  - 2 a  z  - -- + ---- + 3 a z  - a  z  + 
  z    z            3     a                         3    a
                   a                               a
 
     7
    z       7
>   -- + a z
    a
In[9]:=
Kauffman[Link[11, Alternating, 142]][a, z]
Out[9]=   
           3                           2       2                3      3
  2   a   a           3         2   4 z    12 z       2  2   2 z    6 z
-a  + - + -- - a z - a  z + 12 z  + ---- + ----- + 4 a  z  - ---- + ---- + 
      z   z                           4      2                 5      3
                                     a      a                 a      a
 
       3                                            4       4
    8 z         3      3  3      5  3       4   14 z    37 z        2  4
>   ---- - 8 a z  - 6 a  z  + 2 a  z  - 44 z  - ----- - ----- - 14 a  z  + 
     a                                            4       2
                                                 a       a
 
                         5       5       5
       4  4    6  4   3 z    19 z    35 z         5       3  5      5  5
>   6 a  z  - a  z  + ---- - ----- - ----- + 7 a z  + 16 a  z  - 4 a  z  + 
                        5      3       a
                       a      a
 
                6       6                         7       7       7
        6   14 z    31 z        2  6      4  6   z    20 z    44 z          7
>   48 z  + ----- + ----- + 23 a  z  - 8 a  z  - -- + ----- + ----- + 11 a z  - 
              4       2                           5     3       a
             a       a                           a     a
 
                          8      8                 9       9
        3  7       8   4 z    2 z        2  8   6 z    15 z         9      10
>   12 a  z  - 11 z  - ---- - ---- - 13 a  z  - ---- - ----- - 9 a z  - 3 z   - 
                         4      2                 3      a
                        a      a                 a
 
       10
    3 z
>   -----
      2
     a
In[10]:=
Kh[L][q, t]
Out[10]=   
     11     1        3        1       5       3       9       6      10
11 + -- + ------ + ------ + ----- + ----- + ----- + ----- + ----- + ---- + 
      2    12  5    10  4    8  4    8  3    6  3    6  2    4  2    4
     q    q   t    q   t    q  t    q  t    q  t    q  t    q  t    q  t
 
     8                2        2  2       4  2      4  3      6  3      6  4
>   ---- + 10 t + 10 q  t + 8 q  t  + 10 q  t  + 5 q  t  + 8 q  t  + 3 q  t  + 
     2
    q  t
 
       8  4    8  5      10  5    12  6
>   5 q  t  + q  t  + 3 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11a142
L11a141
L11a141
L11a143
L11a143