© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11a133
L11a133
L11a135
L11a135
L11a134
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11a134

Visit L11a134's page at Knotilus!

Acknowledgement

L11a134 as Morse Link
DrawMorseLink

PD Presentation: X6172 X16,7,17,8 X4,17,1,18 X10,5,11,6 X14,3,15,4 X18,13,19,14 X22,20,5,19 X20,12,21,11 X12,22,13,21 X2,9,3,10 X8,15,9,16

Gauss Code: {{1, -10, 5, -3}, {4, -1, 2, -11, 10, -4, 8, -9, 6, -5, 11, -2, 3, -6, 7, -8, 9, -7}}

Jones Polynomial: - q-17/2 + 4q-15/2 - 8q-13/2 + 13q-11/2 - 18q-9/2 + 20q-7/2 - 22q-5/2 + 18q-3/2 - 14q-1/2 + 9q1/2 - 4q3/2 + q5/2

A2 (sl(3)) Invariant: q-26 - 2q-24 - q-22 + 2q-20 - 4q-18 + 3q-16 + 3q-14 + 6q-10 + 4q-6 - 3q-2 + 3 - 4q2 + 2q6 - q8

HOMFLY-PT Polynomial: a-1z3 + az-1 + 3az + az3 - az5 - 4a3z-1 - 10a3z - 8a3z3 - 3a3z5 + 4a5z-1 + 5a5z + a5z3 - a5z5 - a7z-1 + a7z3

Kauffman Polynomial: - a-2z4 + a-1z3 - 4a-1z5 + 1 - 3z2 + 8z4 - 9z6 - az-1 + 4az - 11az3 + 18az5 - 13az7 + 4a2 - 9a2z2 + 5a2z4 + 13a2z6 - 12a2z8 - 4a3z-1 + 15a3z - 34a3z3 + 37a3z5 - 4a3z7 - 7a3z9 + 7a4 - 8a4z2 - 24a4z4 + 47a4z6 - 16a4z8 - 2a4z10 - 4a5z-1 + 14a5z - 27a5z3 + 8a5z5 + 23a5z7 - 12a5z9 + 4a6 + 2a6z2 - 35a6z4 + 39a6z6 - 8a6z8 - 2a6z10 - a7z-1 + 4a7z - 8a7z3 - 4a7z5 + 13a7z7 - 5a7z9 + a8 + 4a8z2 - 15a8z4 + 14a8z6 - 4a8z8 + a9z - 3a9z3 + 3a9z5 - a9z7

Khovanov Homology:
trqj r = -8r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3
j = 6           1
j = 4          3 
j = 2         61 
j = 0        83  
j = -2       117   
j = -4      117    
j = -6     911     
j = -8    911      
j = -10   510       
j = -12  38        
j = -14 15         
j = -16 3          
j = -181           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, Alternating, 134]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, Alternating, 134]]
Out[4]=   
PD[X[6, 1, 7, 2], X[16, 7, 17, 8], X[4, 17, 1, 18], X[10, 5, 11, 6], 
 
>   X[14, 3, 15, 4], X[18, 13, 19, 14], X[22, 20, 5, 19], X[20, 12, 21, 11], 
 
>   X[12, 22, 13, 21], X[2, 9, 3, 10], X[8, 15, 9, 16]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -10, 5, -3}, {4, -1, 2, -11, 10, -4, 8, -9, 6, -5, 11, -2, 3, -6, 
 
>    7, -8, 9, -7}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(17/2)     4       8      13      18     20     22     18      14
-q        + ----- - ----- + ----- - ---- + ---- - ---- + ---- - ------- + 
             15/2    13/2    11/2    9/2    7/2    5/2    3/2   Sqrt[q]
            q       q       q       q      q      q      q
 
                   3/2    5/2
>   9 Sqrt[q] - 4 q    + q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -26    2     -22    2     4     3     3     6    4    3       2      6    8
3 + q    - --- - q    + --- - --- + --- + --- + --- + -- - -- - 4 q  + 2 q  - q
            24           20    18    16    14    10    6    2
           q            q     q     q     q     q     q    q
In[8]:=
HOMFLYPT[Link[11, Alternating, 134]][a, z]
Out[8]=   
       3      5    7                               3
a   4 a    4 a    a                3        5     z       3      3  3    5  3
- - ---- + ---- - -- + 3 a z - 10 a  z + 5 a  z + -- + a z  - 8 a  z  + a  z  + 
z    z      z     z                               a
 
     7  3      5      3  5    5  5
>   a  z  - a z  - 3 a  z  - a  z
In[9]:=
Kauffman[Link[11, Alternating, 134]][a, z]
Out[9]=   
                                     3      5    7
       2      4      6    8   a   4 a    4 a    a                3
1 + 4 a  + 7 a  + 4 a  + a  - - - ---- - ---- - -- + 4 a z + 15 a  z + 
                              z    z      z     z
 
        5        7      9        2      2  2      4  2      6  2      8  2
>   14 a  z + 4 a  z + a  z - 3 z  - 9 a  z  - 8 a  z  + 2 a  z  + 4 a  z  + 
 
     3                                                               4
    z          3       3  3       5  3      7  3      9  3      4   z
>   -- - 11 a z  - 34 a  z  - 27 a  z  - 8 a  z  - 3 a  z  + 8 z  - -- + 
    a                                                                2
                                                                    a
 
                                                  5
       2  4       4  4       6  4       8  4   4 z          5       3  5
>   5 a  z  - 24 a  z  - 35 a  z  - 15 a  z  - ---- + 18 a z  + 37 a  z  + 
                                                a
 
       5  5      7  5      9  5      6       2  6       4  6       6  6
>   8 a  z  - 4 a  z  + 3 a  z  - 9 z  + 13 a  z  + 47 a  z  + 39 a  z  + 
 
        8  6         7      3  7       5  7       7  7    9  7       2  8
>   14 a  z  - 13 a z  - 4 a  z  + 23 a  z  + 13 a  z  - a  z  - 12 a  z  - 
 
        4  8      6  8      8  8      3  9       5  9      7  9      4  10
>   16 a  z  - 8 a  z  - 4 a  z  - 7 a  z  - 12 a  z  - 5 a  z  - 2 a  z   - 
 
       6  10
>   2 a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
    7      1        3        1        5        3        8        5
8 + -- + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
     2    18  8    16  7    14  7    14  6    12  6    12  5    10  5
    q    q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      10       9      11       9      11      11      7      11
>   ------ + ----- + ----- + ----- + ----- + ----- + ---- + ---- + 3 t + 
     10  4    8  4    8  3    6  3    6  2    4  2    4      2
    q   t    q  t    q  t    q  t    q  t    q  t    q  t   q  t
 
       2      2  2      4  2    6  3
>   6 q  t + q  t  + 3 q  t  + q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11a134
L11a133
L11a133
L11a135
L11a135