© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11a132
L11a132
L11a134
L11a134
L11a133
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11a133

Visit L11a133's page at Knotilus!

Acknowledgement

L11a133 as Morse Link
DrawMorseLink

PD Presentation: X6172 X16,7,17,8 X4,17,1,18 X10,5,11,6 X14,3,15,4 X18,11,19,12 X22,19,5,20 X20,14,21,13 X12,22,13,21 X2,9,3,10 X8,15,9,16

Gauss Code: {{1, -10, 5, -3}, {4, -1, 2, -11, 10, -4, 6, -9, 8, -5, 11, -2, 3, -6, 7, -8, 9, -7}}

Jones Polynomial: q-21/2 - 5q-19/2 + 10q-17/2 - 16q-15/2 + 22q-13/2 - 25q-11/2 + 25q-9/2 - 22q-7/2 + 15q-5/2 - 10q-3/2 + 4q-1/2 - q1/2

A2 (sl(3)) Invariant: - q-32 + 3q-30 + q-28 - 3q-26 + 5q-24 - 3q-22 - 2q-20 + 2q-18 - 4q-16 + 4q-14 - 2q-12 + 3q-10 + 5q-8 - 3q-6 + 5q-4 - 2 + q2

HOMFLY-PT Polynomial: - az3 - 2a3z-1 - 5a3z - 2a3z3 + a3z5 + 4a5z-1 + 7a5z + 6a5z3 + 3a5z5 - 3a7z-1 - 5a7z - 2a7z3 + a7z5 + a9z-1 + a9z - a9z3

Kauffman Polynomial: az3 - az5 + 4a2z4 - 4a2z6 - 2a3z-1 + 7a3z - 12a3z3 + 15a3z5 - 9a3z7 + 2a4 + a4z2 - 11a4z4 + 17a4z6 - 11a4z8 - 4a5z-1 + 16a5z - 36a5z3 + 33a5z5 - 5a5z7 - 7a5z9 + 3a6 + 5a6z2 - 38a6z4 + 52a6z6 - 21a6z8 - 2a6z10 - 3a7z-1 + 13a7z - 33a7z3 + 24a7z5 + 13a7z7 - 14a7z9 + 3a8 + 5a8z2 - 36a8z4 + 52a8z6 - 19a8z8 - 2a8z10 - a9z-1 + 3a9z - 14a9z3 + 17a9z5 + 4a9z7 - 7a9z9 + a10 + a10z2 - 12a10z4 + 20a10z6 - 9a10z8 - a11z - 4a11z3 + 10a11z5 - 5a11z7 + a12z4 - a12z6

Khovanov Homology:
trqj r = -9r = -8r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2
j = 2           1
j = 0          3 
j = -2         71 
j = -4        94  
j = -6       136   
j = -8      129    
j = -10     1313     
j = -12    1013      
j = -14   612       
j = -16  410        
j = -18 16         
j = -20 4          
j = -221           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, Alternating, 133]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, Alternating, 133]]
Out[4]=   
PD[X[6, 1, 7, 2], X[16, 7, 17, 8], X[4, 17, 1, 18], X[10, 5, 11, 6], 
 
>   X[14, 3, 15, 4], X[18, 11, 19, 12], X[22, 19, 5, 20], X[20, 14, 21, 13], 
 
>   X[12, 22, 13, 21], X[2, 9, 3, 10], X[8, 15, 9, 16]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -10, 5, -3}, {4, -1, 2, -11, 10, -4, 6, -9, 8, -5, 11, -2, 3, -6, 
 
>    7, -8, 9, -7}]
In[6]:=
Jones[L][q]
Out[6]=   
 -(21/2)     5      10      16      22      25      25     22     15     10
q        - ----- + ----- - ----- + ----- - ----- + ---- - ---- + ---- - ---- + 
            19/2    17/2    15/2    13/2    11/2    9/2    7/2    5/2    3/2
           q       q       q       q       q       q      q      q      q
 
       4
>   ------- - Sqrt[q]
    Sqrt[q]
In[7]:=
A2Invariant[L][q]
Out[7]=   
      -32    3     -28    3     5     3     2     2     4     4     2     3
-2 - q    + --- + q    - --- + --- - --- - --- + --- - --- + --- - --- + --- + 
             30           26    24    22    20    18    16    14    12    10
            q            q     q     q     q     q     q     q     q     q
 
    5    3    5     2
>   -- - -- + -- + q
     8    6    4
    q    q    q
In[8]:=
HOMFLYPT[Link[11, Alternating, 133]][a, z]
Out[8]=   
    3      5      7    9
-2 a    4 a    3 a    a       3        5        7      9        3      3  3
----- + ---- - ---- + -- - 5 a  z + 7 a  z - 5 a  z + a  z - a z  - 2 a  z  + 
  z      z      z     z
 
       5  3      7  3    9  3    3  5      5  5    7  5
>   6 a  z  - 2 a  z  - a  z  + a  z  + 3 a  z  + a  z
In[9]:=
Kauffman[Link[11, Alternating, 133]][a, z]
Out[9]=   
                              3      5      7    9
   4      6      8    10   2 a    4 a    3 a    a       3         5
2 a  + 3 a  + 3 a  + a   - ---- - ---- - ---- - -- + 7 a  z + 16 a  z + 
                            z      z      z     z
 
        7        9      11      4  2      6  2      8  2    10  2      3
>   13 a  z + 3 a  z - a   z + a  z  + 5 a  z  + 5 a  z  + a   z  + a z  - 
 
        3  3       5  3       7  3       9  3      11  3      2  4       4  4
>   12 a  z  - 36 a  z  - 33 a  z  - 14 a  z  - 4 a   z  + 4 a  z  - 11 a  z  - 
 
        6  4       8  4       10  4    12  4      5       3  5       5  5
>   38 a  z  - 36 a  z  - 12 a   z  + a   z  - a z  + 15 a  z  + 33 a  z  + 
 
        7  5       9  5       11  5      2  6       4  6       6  6
>   24 a  z  + 17 a  z  + 10 a   z  - 4 a  z  + 17 a  z  + 52 a  z  + 
 
        8  6       10  6    12  6      3  7      5  7       7  7      9  7
>   52 a  z  + 20 a   z  - a   z  - 9 a  z  - 5 a  z  + 13 a  z  + 4 a  z  - 
 
       11  7       4  8       6  8       8  8      10  8      5  9       7  9
>   5 a   z  - 11 a  z  - 21 a  z  - 19 a  z  - 9 a   z  - 7 a  z  - 14 a  z  - 
 
       9  9      6  10      8  10
>   7 a  z  - 2 a  z   - 2 a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
4    7      1        4        1        6        4        10       6
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
 4    2    22  9    20  8    18  8    18  7    16  7    16  6    14  6
q    q    q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      12       10       13       13       13      12       9      13      6
>   ------ + ------ + ------ + ------ + ------ + ----- + ----- + ----- + ---- + 
     14  5    12  5    12  4    10  4    10  3    8  3    8  2    6  2    6
    q   t    q   t    q   t    q   t    q   t    q  t    q  t    q  t    q  t
 
     9           t     2  2
>   ---- + 3 t + -- + q  t
     4            2
    q  t         q


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11a133
L11a132
L11a132
L11a134
L11a134