© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L10n56
L10n56
L10n58
L10n58
L10n57
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L10n57

Visit L10n57's page at Knotilus!

Acknowledgement

L10n57 as Morse Link
DrawMorseLink

PD Presentation: X10,1,11,2 X20,5,9,6 X3,15,4,14 X15,5,16,4 X7,17,8,16 X11,18,12,19 X17,12,18,13 X2,9,3,10 X13,1,14,8 X6,19,7,20

Gauss Code: {{1, -8, -3, 4, 2, -10, -5, 9}, {8, -1, -6, 7, -9, 3, -4, 5, -7, 6, 10, -2}}

Jones Polynomial: q-9/2 - q-7/2 - q-3/2 - q-1/2 + q5/2 - q7/2

A2 (sl(3)) Invariant: - q-14 - q-12 + 2q-8 + 2q-6 + 2q-4 + 2q-2 + 1 + q2 + q12

HOMFLY-PT Polynomial: - a-3z - a-1z-1 - a-1z + az-1 + 5az + 5az3 + az5 - 3a3z - a3z3

Kauffman Polynomial: - 2a-3z + 4a-3z3 - a-3z5 - 5a-2z2 + 5a-2z4 - a-2z6 - a-1z-1 + 2a-1z + 1 - 7z2 + 6z4 - z6 - az-1 + 10az - 14az3 + 7az5 - az7 - 7a2z2 + 6a2z4 - a2z6 + 6a3z - 10a3z3 + 6a3z5 - a3z7 - 5a4z2 + 5a4z4 - a4z6

Khovanov Homology:
trqj r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4
j = 8         1
j = 6          
j = 4      111 
j = 2     11   
j = 0    131   
j = -2   112    
j = -4   1      
j = -6 111      
j = -8          
j = -101         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[10, NonAlternating, 57]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[10, NonAlternating, 57]]
Out[4]=   
PD[X[10, 1, 11, 2], X[20, 5, 9, 6], X[3, 15, 4, 14], X[15, 5, 16, 4], 
 
>   X[7, 17, 8, 16], X[11, 18, 12, 19], X[17, 12, 18, 13], X[2, 9, 3, 10], 
 
>   X[13, 1, 14, 8], X[6, 19, 7, 20]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -8, -3, 4, 2, -10, -5, 9}, 
 
>   {8, -1, -6, 7, -9, 3, -4, 5, -7, 6, 10, -2}]
In[6]:=
Jones[L][q]
Out[6]=   
 -(9/2)    -(7/2)    -(3/2)      1       5/2    7/2
q       - q       - q       - ------- + q    - q
                              Sqrt[q]
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -14    -12   2    2    2    2     2    12
1 - q    - q    + -- + -- + -- + -- + q  + q
                   8    6    4    2
                  q    q    q    q
In[8]:=
HOMFLYPT[Link[10, NonAlternating, 57]][a, z]
Out[8]=   
   1     a   z    z              3          3    3  3      5
-(---) + - - -- - - + 5 a z - 3 a  z + 5 a z  - a  z  + a z
  a z    z    3   a
             a
In[9]:=
Kauffman[Link[10, NonAlternating, 57]][a, z]
Out[9]=   
                                                      2
     1    a   2 z   2 z               3        2   5 z       2  2      4  2
1 - --- - - - --- + --- + 10 a z + 6 a  z - 7 z  - ---- - 7 a  z  - 5 a  z  + 
    a z   z    3     a                               2
              a                                     a
 
       3                                  4                        5
    4 z          3       3  3      4   5 z       2  4      4  4   z         5
>   ---- - 14 a z  - 10 a  z  + 6 z  + ---- + 6 a  z  + 5 a  z  - -- + 7 a z  + 
      3                                  2                         3
     a                                  a                         a
 
                    6
       3  5    6   z     2  6    4  6      7    3  7
>   6 a  z  - z  - -- - a  z  - a  z  - a z  - a  z
                    2
                   a
In[10]:=
Kh[L][q, t]
Out[10]=   
    2     2     1        1       1       1       1       1     1    1
3 + -- + q  + ------ + ----- + ----- + ----- + ----- + ----- + - + ---- + t + 
     2         10  5    6  4    6  3    6  2    4  2    2  2   t    2
    q         q   t    q  t    q  t    q  t    q  t    q  t        q  t
 
     2      4      4  2    4  3    8  4
>   q  t + q  t + q  t  + q  t  + q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L10n57
L10n56
L10n56
L10n58
L10n58