© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L10n55
L10n55
L10n57
L10n57
L10n56
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L10n56

Visit L10n56's page at Knotilus!

Acknowledgement

L10n56 as Morse Link
DrawMorseLink

PD Presentation: X10,1,11,2 X18,11,19,12 X20,5,9,6 X7,15,8,14 X12,4,13,3 X13,16,14,17 X15,7,16,6 X8,9,1,10 X4,19,5,20 X2,18,3,17

Gauss Code: {{1, -10, 5, -9, 3, 7, -4, -8}, {8, -1, 2, -5, -6, 4, -7, 6, 10, -2, 9, -3}}

Jones Polynomial: q-11/2 - q-9/2 - q-5/2 - q1/2 + q3/2 - q5/2

A2 (sl(3)) Invariant: - q-18 + q-10 + q-8 + 2q-6 + q-4 + q-2 + 1 + q4 + q6 + q8

HOMFLY-PT Polynomial: - a-1z-1 - 3a-1z - a-1z3 + az-1 + 5az + 5az3 + az5 - a3z - a5z

Kauffman Polynomial: - a-1z-1 + 6a-1z - 10a-1z3 + 6a-1z5 - a-1z7 + 1 + 3z2 - 9z4 + 6z6 - z8 - az-1 + 10az - 22az3 + 13az5 - 2az7 + a2z2 - 8a2z4 + 6a2z6 - a2z8 + 2a3z - 8a3z3 + 6a3z5 - a3z7 + a4z2 - 2a5z + 4a5z3 - a5z5 + 3a6z2 - a6z4

Khovanov Homology:
trqj r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4
j = 6         1
j = 4          
j = 2       11 
j = 0     21   
j = -2    121   
j = -4   111    
j = -6   1      
j = -8 111      
j = -10          
j = -121         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[10, NonAlternating, 56]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[10, NonAlternating, 56]]
Out[4]=   
PD[X[10, 1, 11, 2], X[18, 11, 19, 12], X[20, 5, 9, 6], X[7, 15, 8, 14], 
 
>   X[12, 4, 13, 3], X[13, 16, 14, 17], X[15, 7, 16, 6], X[8, 9, 1, 10], 
 
>   X[4, 19, 5, 20], X[2, 18, 3, 17]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -10, 5, -9, 3, 7, -4, -8}, 
 
>   {8, -1, 2, -5, -6, 4, -7, 6, 10, -2, 9, -3}]
In[6]:=
Jones[L][q]
Out[6]=   
 -(11/2)    -(9/2)    -(5/2)              3/2    5/2
q        - q       - q       - Sqrt[q] + q    - q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -18    -10    -8   2     -4    -2    4    6    8
1 - q    + q    + q   + -- + q   + q   + q  + q  + q
                         6
                        q
In[8]:=
HOMFLYPT[Link[10, NonAlternating, 56]][a, z]
Out[8]=   
                                          3
   1     a   3 z            3      5     z         3      5
-(---) + - - --- + 5 a z - a  z - a  z - -- + 5 a z  + a z
  a z    z    a                          a
In[9]:=
Kauffman[Link[10, NonAlternating, 56]][a, z]
Out[9]=   
     1    a   6 z               3        5        2    2  2    4  2      6  2
1 - --- - - + --- + 10 a z + 2 a  z - 2 a  z + 3 z  + a  z  + a  z  + 3 a  z  - 
    a z   z    a
 
        3                                                             5
    10 z          3      3  3      5  3      4      2  4    6  4   6 z
>   ----- - 22 a z  - 8 a  z  + 4 a  z  - 9 z  - 8 a  z  - a  z  + ---- + 
      a                                                             a
 
                                                  7
          5      3  5    5  5      6      2  6   z         7    3  7    8
>   13 a z  + 6 a  z  - a  z  + 6 z  + 6 a  z  - -- - 2 a z  - a  z  - z  - 
                                                 a
 
     2  8
>   a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
     -4   2      1        1       1       1       1       1      1      1
2 + q   + -- + ------ + ----- + ----- + ----- + ----- + ----- + ---- + ---- + 
           2    12  5    8  4    8  3    8  2    6  2    4  2    4      2
          q    q   t    q  t    q  t    q  t    q  t    q  t    q  t   q  t
 
        t     2  2    2  3    6  4
>   t + -- + q  t  + q  t  + q  t
         2
        q


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L10n56
L10n55
L10n55
L10n57
L10n57