© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L10n24
L10n24
L10n26
L10n26
L10n25
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L10n25

Visit L10n25's page at Knotilus!

Acknowledgement

L10n25 as Morse Link
DrawMorseLink

PD Presentation: X6172 X10,3,11,4 X11,17,12,16 X7,15,8,14 X15,9,16,8 X17,5,18,20 X13,18,14,19 X19,12,20,13 X2536 X4,9,1,10

Gauss Code: {{1, -9, 2, -10}, {9, -1, -4, 5, 10, -2, -3, 8, -7, 4, -5, 3, -6, 7, -8, 6}}

Jones Polynomial: - q-11/2 + q-9/2 - 2q-7/2 + q-5/2 - q-3/2 + q5/2 - q7/2

A2 (sl(3)) Invariant: q-18 + 2q-16 + 2q-14 + 2q-12 + q-10 + q-8 - q-6 - q-4 + q2 + q12

HOMFLY-PT Polynomial: - a-3z - a-1z-1 - a-1z + 3az-1 + 6az + 5az3 + az5 - 4a3z-1 - 7a3z - 2a3z3 + 2a5z-1 + a5z

Kauffman Polynomial: - 2a-3z + 4a-3z3 - a-3z5 + a-2 - 5a-2z2 + 5a-2z4 - a-2z6 - a-1z-1 + a-1z + a-1z3 + 3 - 9z2 + 7z4 - z6 - 3az-1 + 13az - 22az3 + 13az5 - 2az7 + 3a2 - 5a2z2 - 3a2z4 + 5a2z6 - a2z8 - 4a3z-1 + 18a3z - 30a3z3 + 18a3z5 - 3a3z7 + 2a4 - a4z2 - 5a4z4 + 5a4z6 - a4z8 - 2a5z-1 + 8a5z - 11a5z3 + 6a5z5 - a5z7

Khovanov Homology:
trqj r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4
j = 8          1
j = 6           
j = 4       111 
j = 2      11   
j = 0     121   
j = -2    122    
j = -4   11      
j = -6  111      
j = -8 12        
j = -10           
j = -121          


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[10, NonAlternating, 25]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[10, NonAlternating, 25]]
Out[4]=   
PD[X[6, 1, 7, 2], X[10, 3, 11, 4], X[11, 17, 12, 16], X[7, 15, 8, 14], 
 
>   X[15, 9, 16, 8], X[17, 5, 18, 20], X[13, 18, 14, 19], X[19, 12, 20, 13], 
 
>   X[2, 5, 3, 6], X[4, 9, 1, 10]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -9, 2, -10}, {9, -1, -4, 5, 10, -2, -3, 8, -7, 4, -5, 3, -6, 7, 
 
>    -8, 6}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(11/2)    -(9/2)    2      -(5/2)    -(3/2)    5/2    7/2
-q        + q       - ---- + q       - q       + q    - q
                       7/2
                      q
In[7]:=
A2Invariant[L][q]
Out[7]=   
 -18    2     2     2     -10    -8    -6    -4    2    12
q    + --- + --- + --- + q    + q   - q   - q   + q  + q
        16    14    12
       q     q     q
In[8]:=
HOMFLYPT[Link[10, NonAlternating, 25]][a, z]
Out[8]=   
                  3      5
   1     3 a   4 a    2 a    z    z              3      5          3
-(---) + --- - ---- + ---- - -- - - + 6 a z - 7 a  z + a  z + 5 a z  - 
  a z     z     z      z      3   a
                             a
 
       3  3      5
>   2 a  z  + a z
In[9]:=
Kauffman[Link[10, NonAlternating, 25]][a, z]
Out[9]=   
                                       3      5
     -2      2      4    1    3 a   4 a    2 a    2 z   z                3
3 + a   + 3 a  + 2 a  - --- - --- - ---- - ---- - --- + - + 13 a z + 18 a  z + 
                        a z    z     z      z      3    a
                                                  a
 
                       2                        3    3
       5        2   5 z       2  2    4  2   4 z    z          3       3  3
>   8 a  z - 9 z  - ---- - 5 a  z  - a  z  + ---- + -- - 22 a z  - 30 a  z  - 
                      2                        3    a
                     a                        a
 
                         4                        5
        5  3      4   5 z       2  4      4  4   z          5       3  5
>   11 a  z  + 7 z  + ---- - 3 a  z  - 5 a  z  - -- + 13 a z  + 18 a  z  + 
                        2                         3
                       a                         a
 
                    6
       5  5    6   z       2  6      4  6        7      3  7    5  7    2  8
>   6 a  z  - z  - -- + 5 a  z  + 5 a  z  - 2 a z  - 3 a  z  - a  z  - a  z  - 
                    2
                   a
 
     4  8
>   a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
    2     2     1        1       2       1       1       1       1       1
2 + -- + q  + ------ + ----- + ----- + ----- + ----- + ----- + ----- + ----- + 
     2         12  6    8  5    8  4    6  4    6  3    4  3    6  2    4  2
    q         q   t    q  t    q  t    q  t    q  t    q  t    q  t    q  t
 
      1     1    2          2      4      4  2    4  3    8  4
>   ----- + - + ---- + t + q  t + q  t + q  t  + q  t  + q  t
     2  2   t    2
    q  t        q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L10n25
L10n24
L10n24
L10n26
L10n26