© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L10n23
L10n23
L10n25
L10n25
L10n24
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L10n24

Visit L10n24's page at Knotilus!

Acknowledgement

L10n24 as Morse Link
DrawMorseLink

PD Presentation: X6172 X10,4,11,3 X12,8,13,7 X13,18,14,19 X9,17,10,16 X17,9,18,8 X15,20,16,5 X19,14,20,15 X2536 X4,12,1,11

Gauss Code: {{1, -9, 2, -10}, {9, -1, 3, 6, -5, -2, 10, -3, -4, 8, -7, 5, -6, 4, -8, 7}}

Jones Polynomial: - q-5/2 + 2q-3/2 - 3q-1/2 + 2q1/2 - 3q3/2 + 2q5/2 - 2q7/2 + q9/2

A2 (sl(3)) Invariant: q-8 + q-4 + q-2 + 1 + 2q2 + q4 + 2q6 + q8 - q14

HOMFLY-PT Polynomial: 2a-3z + a-3z3 - a-1z-1 - 4a-1z - 4a-1z3 - a-1z5 + az-1 + 2az + az3

Kauffman Polynomial: - 3a-4z2 + 4a-4z4 - a-4z6 + 4a-3z - 10a-3z3 + 9a-3z5 - 2a-3z7 - 3a-2z2 + a-2z4 + 3a-2z6 - a-2z8 - a-1z-1 + 8a-1z - 18a-1z3 + 14a-1z5 - 3a-1z7 + 1 - z2 - 3z4 + 4z6 - z8 - az-1 + 4az - 8az3 + 5az5 - az7 - a2z2

Khovanov Homology:
trqj r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5
j = 10       1
j = 8      1 
j = 6     11 
j = 4    21  
j = 2  111   
j = 0  32    
j = -2 12     
j = -4 1      
j = -61       


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[10, NonAlternating, 24]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[10, NonAlternating, 24]]
Out[4]=   
PD[X[6, 1, 7, 2], X[10, 4, 11, 3], X[12, 8, 13, 7], X[13, 18, 14, 19], 
 
>   X[9, 17, 10, 16], X[17, 9, 18, 8], X[15, 20, 16, 5], X[19, 14, 20, 15], 
 
>   X[2, 5, 3, 6], X[4, 12, 1, 11]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -9, 2, -10}, {9, -1, 3, 6, -5, -2, 10, -3, -4, 8, -7, 5, -6, 4, 
 
>    -8, 7}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(5/2)    2        3                     3/2      5/2      7/2    9/2
-q       + ---- - ------- + 2 Sqrt[q] - 3 q    + 2 q    - 2 q    + q
            3/2   Sqrt[q]
           q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -8    -4    -2      2    4      6    8    14
1 + q   + q   + q   + 2 q  + q  + 2 q  + q  - q
In[8]:=
HOMFLYPT[Link[10, NonAlternating, 24]][a, z]
Out[8]=   
                                  3      3           5
   1     a   2 z   4 z           z    4 z       3   z
-(---) + - + --- - --- + 2 a z + -- - ---- + a z  - --
  a z    z    3     a             3    a            a
             a                   a
In[9]:=
Kauffman[Link[10, NonAlternating, 24]][a, z]
Out[9]=   
                                          2      2               3       3
     1    a   4 z   8 z            2   3 z    3 z     2  2   10 z    18 z
1 - --- - - + --- + --- + 4 a z - z  - ---- - ---- - a  z  - ----- - ----- - 
    a z   z    3     a                   4      2              3       a
              a                         a      a              a
 
                       4    4      5       5                    6      6
         3      4   4 z    z    9 z    14 z         5      6   z    3 z
>   8 a z  - 3 z  + ---- + -- + ---- + ----- + 5 a z  + 4 z  - -- + ---- - 
                      4     2     3      a                      4     2
                     a     a     a                             a     a
 
       7      7                8
    2 z    3 z       7    8   z
>   ---- - ---- - a z  - z  - --
      3     a                  2
     a                        a
In[10]:=
Kh[L][q, t]
Out[10]=   
    2     2     1      1      1            2      2  2      4  2    4  3
3 + -- + q  + ----- + ---- + ---- + 2 t + q  t + q  t  + 2 q  t  + q  t  + 
     2         6  2    4      2
    q         q  t    q  t   q  t
 
     6  3    6  4    8  4    10  5
>   q  t  + q  t  + q  t  + q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L10n24
L10n23
L10n23
L10n25
L10n25