© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L10n111
L10n111
L10n113
L10n113
L10n112
Knotscape
This page is passe. Go here instead!

The 5-Component Link

L10n112

Visit L10n112's page at Knotilus!

Acknowledgement

L10n112 as Morse Link
DrawMorseLink

PD Presentation: X6172 X2536 X11,19,12,18 X3,11,4,10 X9,1,10,4 X7,15,8,14 X13,5,14,8 X15,17,16,20 X19,13,20,16 X17,9,18,12

Gauss Code: {{1, -2, -4, 5}, {2, -1, -6, 7}, {-5, 4, -3, 10}, {-7, 6, -8, 9}, {-10, 3, -9, 8}}

Jones Polynomial: 4q - 5q2 + 10q3 - 5q4 + 11q5 - 5q6 + 6q7 - q8 + q9

A2 (sl(3)) Invariant: 4q2 + 2q4 + 7q6 + 14q8 + 18q10 + 28q12 + 30q14 + 34q16 + 32q18 + 26q20 + 23q22 + 13q24 + 7q26 + 4q28 + q30

HOMFLY-PT Polynomial: a-10z-4 + a-10z-2 - 4a-8z-4 - 7a-8z-2 - 4a-8 + 6a-6z-4 + 15a-6z-2 + 14a-6 + 6a-6z2 - 4a-4z-4 - 13a-4z-2 - 16a-4 - 10a-4z2 - 3a-4z4 + a-2z-4 + 4a-2z-2 + 6a-2 + 4a-2z2

Kauffman Polynomial: - a-10z-4 + 5a-10z-2 - 10a-10 + 10a-10z2 - 5a-10z4 + a-10z6 + 4a-9z-3 - 15a-9z-1 + 20a-9z - 10a-9z3 + a-9z7 - 4a-8z-4 + 14a-8z-2 - 25a-8 + 30a-8z2 - 19a-8z4 + 3a-8z6 + a-8z8 + 12a-7z-3 - 41a-7z-1 + 55a-7z - 30a-7z3 - 6a-7z5 + 6a-7z7 - 6a-6z-4 + 18a-6z-2 - 31a-6 + 40a-6z2 - 39a-6z4 + 12a-6z6 + a-6z8 + 12a-5z-3 - 41a-5z-1 + 55a-5z - 30a-5z3 + 5a-5z7 - 4a-4z-4 + 14a-4z-2 - 25a-4 + 30a-4z2 - 25a-4z4 + 10a-4z6 + 4a-3z-3 - 15a-3z-1 + 20a-3z - 10a-3z3 + 6a-3z5 - a-2z-4 + 5a-2z-2 - 10a-2 + 10a-2z2

Khovanov Homology:
trqj r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7r = 8
j = 19        1
j = 17       11
j = 15      5  
j = 13      1  
j = 11    115   
j = 9   410    
j = 7  61     
j = 51 4      
j = 356       
j = 14        


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
5
In[3]:=
Show[DrawMorseLink[Link[10, NonAlternating, 112]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[10, NonAlternating, 112]]
Out[4]=   
PD[X[6, 1, 7, 2], X[2, 5, 3, 6], X[11, 19, 12, 18], X[3, 11, 4, 10], 
 
>   X[9, 1, 10, 4], X[7, 15, 8, 14], X[13, 5, 14, 8], X[15, 17, 16, 20], 
 
>   X[19, 13, 20, 16], X[17, 9, 18, 12]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -2, -4, 5}, {2, -1, -6, 7}, {-5, 4, -3, 10}, {-7, 6, -8, 9}, 
 
>   {-10, 3, -9, 8}]
In[6]:=
Jones[L][q]
Out[6]=   
         2       3      4       5      6      7    8    9
4 q - 5 q  + 10 q  - 5 q  + 11 q  - 5 q  + 6 q  - q  + q
In[7]:=
A2Invariant[L][q]
Out[7]=   
   2      4      6       8       10       12       14       16       18
4 q  + 2 q  + 7 q  + 14 q  + 18 q   + 28 q   + 30 q   + 34 q   + 32 q   + 
 
        20       22       24      26      28    30
>   26 q   + 23 q   + 13 q   + 7 q   + 4 q   + q
In[8]:=
HOMFLYPT[Link[10, NonAlternating, 112]][a, z]
Out[8]=   
-4   14   16   6      1        4       6       4       1       1        7
-- + -- - -- + -- + ------ - ----- + ----- - ----- + ----- + ------ - ----- + 
 8    6    4    2    10  4    8  4    6  4    4  4    2  4    10  2    8  2
a    a    a    a    a   z    a  z    a  z    a  z    a  z    a   z    a  z
 
                               2       2      2      4
     15      13       4     6 z    10 z    4 z    3 z
>   ----- - ----- + ----- + ---- - ----- + ---- - ----
     6  2    4  2    2  2     6      4       2      4
    a  z    a  z    a  z     a      a       a      a
In[9]:=
Kauffman[Link[10, NonAlternating, 112]][a, z]
Out[9]=   
-10   25   31   25   10     1        4       6       4       1       4
--- - -- - -- - -- - -- - ------ - ----- - ----- - ----- - ----- + ----- + 
 10    8    6    4    2    10  4    8  4    6  4    4  4    2  4    9  3
a     a    a    a    a    a   z    a  z    a  z    a  z    a  z    a  z
 
     12      12       4       5       14      18      14       5      15
>   ----- + ----- + ----- + ------ + ----- + ----- + ----- + ----- - ---- - 
     7  3    5  3    3  3    10  2    8  2    6  2    4  2    2  2    9
    a  z    a  z    a  z    a   z    a  z    a  z    a  z    a  z    a  z
 
                                                         2       2       2
     41     41     15    20 z   55 z   55 z   20 z   10 z    30 z    40 z
>   ---- - ---- - ---- + ---- + ---- + ---- + ---- + ----- + ----- + ----- + 
     7      5      3       9      7      5      3      10      8       6
    a  z   a  z   a  z    a      a      a      a      a       a       a
 
        2       2       3       3       3       3      4       4       4
    30 z    10 z    10 z    30 z    30 z    10 z    5 z    19 z    39 z
>   ----- + ----- - ----- - ----- - ----- - ----- - ---- - ----- - ----- - 
      4       2       9       7       5       3      10      8       6
     a       a       a       a       a       a      a       a       a
 
        4      5      5    6       6       6       6    7      7      7    8
    25 z    6 z    6 z    z     3 z    12 z    10 z    z    6 z    5 z    z
>   ----- - ---- + ---- + --- + ---- + ----- + ----- + -- + ---- + ---- + -- + 
      4       7      3     10     8      6       4      9     7      5     8
     a       a      a     a      a      a       a      a     a      a     a
 
     8
    z
>   --
     6
    a
In[10]:=
Kh[L][q, t]
Out[10]=   
         3    5      3        5  2      7  2    7  3      9  3       9  4
4 q + 5 q  + q  + 6 q  t + 4 q  t  + 6 q  t  + q  t  + 4 q  t  + 10 q  t  + 
 
        11  4      11  5    13  6      15  6    17  7    17  8    19  8
>   11 q   t  + 5 q   t  + q   t  + 5 q   t  + q   t  + q   t  + q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L10n112
L10n111
L10n111
L10n113
L10n113