PD Presentation: |
X6172 X12,3,13,4 X13,17,14,20 X19,11,20,16 X7,19,8,18 X15,8,16,9 X9,14,10,15 X17,5,18,10 X2536 X4,11,1,12 |
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... |
In[2]:= | Length[Skeleton[L]] |
Out[2]= | 4 |
In[3]:= | Show[DrawMorseLink[Link[10, NonAlternating, 111]]] |
|  |
Out[3]= | -Graphics- |
In[4]:= | PD[L = Link[10, NonAlternating, 111]] |
Out[4]= | PD[X[6, 1, 7, 2], X[12, 3, 13, 4], X[13, 17, 14, 20], X[19, 11, 20, 16],
> X[7, 19, 8, 18], X[15, 8, 16, 9], X[9, 14, 10, 15], X[17, 5, 18, 10],
> X[2, 5, 3, 6], X[4, 11, 1, 12]] |
In[5]:= | GaussCode[L] |
Out[5]= | GaussCode[{1, -9, 2, -10}, {-8, 5, -4, 3}, {9, -1, -5, 6, -7, 8},
> {10, -2, -3, 7, -6, 4}] |
In[6]:= | Jones[L][q] |
Out[6]= | -(11/2) -(9/2) 2 -(5/2) 2 2 3/2 5/2 7/2
-q + q - ---- - q - ---- - ------- - q + q - q
7/2 3/2 Sqrt[q]
q q |
In[7]:= | A2Invariant[L][q] |
Out[7]= | -18 2 3 5 8 12 12 12 10 2 4 6 12
7 + q + --- + --- + --- + --- + -- + -- + -- + -- + 5 q + 2 q + q + q
16 14 12 10 8 6 4 2
q q q q q q q q |
In[8]:= | HOMFLYPT[Link[10, NonAlternating, 111]][a, z] |
Out[8]= | 3 5 3 5
1 3 a 3 a a 3 8 a 7 a 2 a z 2 z
-(----) + --- - ---- + -- - --- + --- - ---- + ---- - -- - --- + 10 a z -
3 3 3 3 a z z z z 3 a
a z z z z a
3 5 3 3 3 5
> 8 a z + a z + 6 a z - 2 a z + a z |
In[9]:= | Kauffman[Link[10, NonAlternating, 111]][a, z] |
Out[9]= | 3 5 2 4
2 4 1 3 a 3 a a 3 6 a 3 a 5 12 a
10 + 19 a + 10 a + ---- + --- + ---- + -- - -- - ---- - ---- - --- - ---- -
3 3 3 3 2 2 2 a z z
a z z z z z z z
3 5 2
12 a 5 a 2 z 12 z 3 5 2 2 z
> ----- - ---- - --- + ---- + 35 a z + 31 a z + 10 a z - 20 z - ---- -
z z 3 a 2
a a
3 3
2 2 4 2 4 z 11 z 3 3 3 5 3 4
> 26 a z - 8 a z + ---- - ----- - 43 a z - 39 a z - 11 a z + 13 z +
3 a
a
4 5 5
4 z 2 4 4 4 z 6 z 5 3 5 5 5
> ---- + 6 a z - 3 a z - -- + ---- + 21 a z + 20 a z + 6 a z -
2 3 a
a a
6 7
6 z 2 6 4 6 z 7 3 7 5 7 2 8
> 2 z - -- + 4 a z + 5 a z - -- - 3 a z - 3 a z - a z - a z -
2 a
a
4 8
> a z |
In[10]:= | Kh[L][q, t] |
Out[10]= | 3 2 1 1 2 1 1 1 3 5
4 + -- + q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + ----- +
2 12 6 8 5 8 4 6 4 6 3 4 3 6 2 4 2
q q t q t q t q t q t q t q t q t
2 1 1 1 2 4 2 2 4 2 6 3 6 4
> ----- + - + ---- + ---- + t + q t + q t + q t + q t + q t + q t +
2 2 t 4 2
q t q t q t
8 4
> q t |