PD Presentation: |
X6172 X5,12,6,13 X3849 X2,16,3,15 X16,7,17,8 X19,11,20,14 X13,15,14,20 X9,18,10,19 X11,10,12,5 X17,1,18,4 |
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... |
In[2]:= | Length[Skeleton[L]] |
Out[2]= | 4 |
In[3]:= | Show[DrawMorseLink[Link[10, NonAlternating, 109]]] |
|  |
Out[3]= | -Graphics- |
In[4]:= | PD[L = Link[10, NonAlternating, 109]] |
Out[4]= | PD[X[6, 1, 7, 2], X[5, 12, 6, 13], X[3, 8, 4, 9], X[2, 16, 3, 15],
> X[16, 7, 17, 8], X[19, 11, 20, 14], X[13, 15, 14, 20], X[9, 18, 10, 19],
> X[11, 10, 12, 5], X[17, 1, 18, 4]] |
In[5]:= | GaussCode[L] |
Out[5]= | GaussCode[{1, -4, -3, 10}, {-9, 2, -7, 6}, {-2, -1, 5, 3, -8, 9},
> {4, -5, -10, 8, -6, 7}] |
In[6]:= | Jones[L][q] |
Out[6]= | -(13/2) 2 4 4 7 4 6 3/2
-q + ----- - ---- + ---- - ---- + ---- - ------- + 2 Sqrt[q] - 2 q
11/2 9/2 7/2 5/2 3/2 Sqrt[q]
q q q q q |
In[7]:= | A2Invariant[L][q] |
Out[7]= | -20 2 4 4 9 10 12 12 9 2 4 6
9 + q + --- + --- + --- + --- + -- + -- + -- + -- + 4 q + 3 q + 2 q
16 14 12 10 8 6 4 2
q q q q q q q q |
In[8]:= | HOMFLYPT[Link[10, NonAlternating, 109]][a, z] |
Out[8]= | 3 5 3 5
1 3 a 3 a a 3 8 a 7 a 2 a 2 z 3
-(----) + --- - ---- + -- - --- + --- - ---- + ---- - --- + 8 a z - 8 a z +
3 3 3 3 a z z z z a
a z z z z
5 3 3 3 5 3 3 5
> 2 a z + 3 a z - 4 a z + a z - a z |
In[9]:= | Kauffman[Link[10, NonAlternating, 109]][a, z] |
Out[9]= | 3 5 2 4
2 4 1 3 a 3 a a 3 6 a 3 a 5 12 a
10 + 19 a + 10 a + ---- + --- + ---- + -- - -- - ---- - ---- - --- - ---- -
3 3 3 3 2 2 2 a z z
a z z z z z z z
3 5
12 a 5 a 7 z 3 5 7 2 2 2
> ----- - ---- + --- + 23 a z + 29 a z + 12 a z - a z - 7 z - 23 a z -
z z a
3
4 2 6 2 3 z 3 3 3 5 3 7 3 4
> 17 a z - a z - ---- - 21 a z - 36 a z - 15 a z + 3 a z + 2 z +
a
2 4 4 4 6 4 5 3 5 5 5 7 5 6
> 8 a z + 11 a z + 5 a z + 8 a z + 20 a z + 11 a z - a z - z -
4 6 6 6 7 3 7 5 7 2 8 4 8
> a z - 2 a z - 2 a z - 5 a z - 3 a z - a z - a z |
In[10]:= | Kh[L][q, t] |
Out[10]= | 5 1 1 2 2 2 2 2 5
5 + -- + ------ + ------ + ------ + ------ + ----- + ----- + ----- + ----- +
2 14 6 12 6 12 5 10 4 8 4 8 3 6 3 6 2
q q t q t q t q t q t q t q t q t
4 1 3 2 2 2 4 2
> ----- + ---- + ---- + t + q t + q t + 2 q t
4 2 4 2
q t q t q t |