© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L10n108
L10n108
L10n110
L10n110
L10n109
Knotscape
This page is passe. Go here instead!

The 4-Component Link

L10n109

Visit L10n109's page at Knotilus!

Acknowledgement

L10n109 as Morse Link
DrawMorseLink

PD Presentation: X6172 X5,12,6,13 X3849 X2,16,3,15 X16,7,17,8 X19,11,20,14 X13,15,14,20 X9,18,10,19 X11,10,12,5 X17,1,18,4

Gauss Code: {{1, -4, -3, 10}, {-9, 2, -7, 6}, {-2, -1, 5, 3, -8, 9}, {4, -5, -10, 8, -6, 7}}

Jones Polynomial: - q-13/2 + 2q-11/2 - 4q-9/2 + 4q-7/2 - 7q-5/2 + 4q-3/2 - 6q-1/2 + 2q1/2 - 2q3/2

A2 (sl(3)) Invariant: q-20 + 2q-16 + 4q-14 + 4q-12 + 9q-10 + 10q-8 + 12q-6 + 12q-4 + 9q-2 + 9 + 4q2 + 3q4 + 2q6

HOMFLY-PT Polynomial: - a-1z-3 - 3a-1z-1 - 2a-1z + 3az-3 + 8az-1 + 8az + 3az3 - 3a3z-3 - 7a3z-1 - 8a3z - 4a3z3 - a3z5 + a5z-3 + 2a5z-1 + 2a5z + a5z3

Kauffman Polynomial: a-1z-3 - 5a-1z-1 + 7a-1z - 3a-1z3 - 3z-2 + 10 - 7z2 + 2z4 - z6 + 3az-3 - 12az-1 + 23az - 21az3 + 8az5 - 2az7 - 6a2z-2 + 19a2 - 23a2z2 + 8a2z4 - a2z8 + 3a3z-3 - 12a3z-1 + 29a3z - 36a3z3 + 20a3z5 - 5a3z7 - 3a4z-2 + 10a4 - 17a4z2 + 11a4z4 - a4z6 - a4z8 + a5z-3 - 5a5z-1 + 12a5z - 15a5z3 + 11a5z5 - 3a5z7 - a6z2 + 5a6z4 - 2a6z6 - a7z + 3a7z3 - a7z5

Khovanov Homology:
trqj r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2
j = 4        2
j = 2       11
j = 0      51 
j = -2     35  
j = -4    41   
j = -6   25    
j = -8  22     
j = -10  2      
j = -1212       
j = -141        


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
4
In[3]:=
Show[DrawMorseLink[Link[10, NonAlternating, 109]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[10, NonAlternating, 109]]
Out[4]=   
PD[X[6, 1, 7, 2], X[5, 12, 6, 13], X[3, 8, 4, 9], X[2, 16, 3, 15], 
 
>   X[16, 7, 17, 8], X[19, 11, 20, 14], X[13, 15, 14, 20], X[9, 18, 10, 19], 
 
>   X[11, 10, 12, 5], X[17, 1, 18, 4]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -4, -3, 10}, {-9, 2, -7, 6}, {-2, -1, 5, 3, -8, 9}, 
 
>   {4, -5, -10, 8, -6, 7}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(13/2)     2      4      4      7      4        6                     3/2
-q        + ----- - ---- + ---- - ---- + ---- - ------- + 2 Sqrt[q] - 2 q
             11/2    9/2    7/2    5/2    3/2   Sqrt[q]
            q       q      q      q      q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -20    2     4     4     9    10   12   12   9       2      4      6
9 + q    + --- + --- + --- + --- + -- + -- + -- + -- + 4 q  + 3 q  + 2 q
            16    14    12    10    8    6    4    2
           q     q     q     q     q    q    q    q
In[8]:=
HOMFLYPT[Link[10, NonAlternating, 109]][a, z]
Out[8]=   
                   3    5                  3      5
   1      3 a   3 a    a     3    8 a   7 a    2 a    2 z              3
-(----) + --- - ---- + -- - --- + --- - ---- + ---- - --- + 8 a z - 8 a  z + 
     3     3      3     3   a z    z     z      z      a
  a z     z      z     z
 
       5          3      3  3    5  3    3  5
>   2 a  z + 3 a z  - 4 a  z  + a  z  - a  z
In[9]:=
Kauffman[Link[10, NonAlternating, 109]][a, z]
Out[9]=   
                                     3    5           2      4
         2       4    1     3 a   3 a    a    3    6 a    3 a     5    12 a
10 + 19 a  + 10 a  + ---- + --- + ---- + -- - -- - ---- - ---- - --- - ---- - 
                        3    3      3     3    2     2      2    a z    z
                     a z    z      z     z    z     z      z
 
        3      5
    12 a    5 a    7 z                3         5      7        2       2  2
>   ----- - ---- + --- + 23 a z + 29 a  z + 12 a  z - a  z - 7 z  - 23 a  z  - 
      z      z      a
 
                          3
        4  2    6  2   3 z          3       3  3       5  3      7  3      4
>   17 a  z  - a  z  - ---- - 21 a z  - 36 a  z  - 15 a  z  + 3 a  z  + 2 z  + 
                        a
 
       2  4       4  4      6  4        5       3  5       5  5    7  5    6
>   8 a  z  + 11 a  z  + 5 a  z  + 8 a z  + 20 a  z  + 11 a  z  - a  z  - z  - 
 
     4  6      6  6        7      3  7      5  7    2  8    4  8
>   a  z  - 2 a  z  - 2 a z  - 5 a  z  - 3 a  z  - a  z  - a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
    5      1        1        2        2        2       2       2       5
5 + -- + ------ + ------ + ------ + ------ + ----- + ----- + ----- + ----- + 
     2    14  6    12  6    12  5    10  4    8  4    8  3    6  3    6  2
    q    q   t    q   t    q   t    q   t    q  t    q  t    q  t    q  t
 
      4      1      3          2      2  2      4  2
>   ----- + ---- + ---- + t + q  t + q  t  + 2 q  t
     4  2    4      2
    q  t    q  t   q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L10n109
L10n108
L10n108
L10n110
L10n110