© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L10n107
L10n107
L10n109
L10n109
L10n108
Knotscape
This page is passe. Go here instead!

The 4-Component Link

L10n108

Visit L10n108's page at Knotilus!

Acknowledgement

L10n108 as Morse Link
DrawMorseLink

PD Presentation: X6172 X5,12,6,13 X3849 X15,2,16,3 X16,7,17,8 X19,11,20,14 X13,15,14,20 X9,18,10,19 X11,10,12,5 X4,17,1,18

Gauss Code: {{1, 4, -3, -10}, {-9, 2, -7, 6}, {-2, -1, 5, 3, -8, 9}, {-4, -5, 10, 8, -6, 7}}

Jones Polynomial: - q-17/2 + q-15/2 - 3q-13/2 + q-11/2 - 4q-9/2 + q-7/2 - 3q-5/2 + q-3/2 - q-1/2

A2 (sl(3)) Invariant: q-30 + 2q-26 + 4q-24 + 7q-22 + 10q-20 + 11q-18 + 13q-16 + 10q-14 + 9q-12 + 6q-10 + 4q-8 + 2q-6 + q-4 + q-2

HOMFLY-PT Polynomial: - a3z-3 - 4a3z-1 - 7a3z - 5a3z3 - a3z5 + 3a5z-3 + 9a5z-1 + 13a5z + 12a5z3 + 6a5z5 + a5z7 - 3a7z-3 - 6a7z-1 - 7a7z - 5a7z3 - a7z5 + a9z-3 + a9z-1 + a9z

Kauffman Polynomial: a3z-3 - 5a3z-1 + 11a3z - 12a3z3 + 6a3z5 - a3z7 - 3a4z-2 + 10a4 - 11a4z2 + 4a4z6 - a4z8 + 3a5z-3 - 12a5z-1 + 27a5z - 37a5z3 + 22a5z5 - 4a5z7 - 6a6z-2 + 19a6 - 23a6z2 + 9a6z4 + 2a6z6 - a6z8 + 3a7z-3 - 12a7z-1 + 25a7z - 28a7z3 + 16a7z5 - 3a7z7 - 3a8z-2 + 10a8 - 13a8z2 + 9a8z4 - 2a8z6 + a9z-3 - 5a9z-1 + 8a9z - 3a9z3 - a10z2 - a11z

Khovanov Homology:
trqj r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2
j = 0        1
j = -2         
j = -4      31 
j = -6    112  
j = -8    41   
j = -10  212    
j = -12  42     
j = -141 1      
j = -1622       
j = -181        


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
4
In[3]:=
Show[DrawMorseLink[Link[10, NonAlternating, 108]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[10, NonAlternating, 108]]
Out[4]=   
PD[X[6, 1, 7, 2], X[5, 12, 6, 13], X[3, 8, 4, 9], X[15, 2, 16, 3], 
 
>   X[16, 7, 17, 8], X[19, 11, 20, 14], X[13, 15, 14, 20], X[9, 18, 10, 19], 
 
>   X[11, 10, 12, 5], X[4, 17, 1, 18]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, 4, -3, -10}, {-9, 2, -7, 6}, {-2, -1, 5, 3, -8, 9}, 
 
>   {-4, -5, 10, 8, -6, 7}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(17/2)    -(15/2)     3      -(11/2)    4      -(7/2)    3      -(3/2)
-q        + q        - ----- + q        - ---- + q       - ---- + q       - 
                        13/2               9/2              5/2
                       q                  q                q
 
       1
>   -------
    Sqrt[q]
In[7]:=
A2Invariant[L][q]
Out[7]=   
 -30    2     4     7    10    11    13    10     9     6    4    2     -4    -2
q    + --- + --- + --- + --- + --- + --- + --- + --- + --- + -- + -- + q   + q
        26    24    22    20    18    16    14    12    10    8    6
       q     q     q     q     q     q     q     q     q     q    q
In[8]:=
HOMFLYPT[Link[10, NonAlternating, 108]][a, z]
Out[8]=   
   3       5      7    9      3      5      7    9
  a     3 a    3 a    a    4 a    9 a    6 a    a       3         5
-(--) + ---- - ---- + -- - ---- + ---- - ---- + -- - 7 a  z + 13 a  z - 
   3      3      3     3    z      z      z     z
  z      z      z     z
 
       7      9        3  3       5  3      7  3    3  5      5  5    7  5
>   7 a  z + a  z - 5 a  z  + 12 a  z  - 5 a  z  - a  z  + 6 a  z  - a  z  + 
 
     5  7
>   a  z
In[9]:=
Kauffman[Link[10, NonAlternating, 108]][a, z]
Out[9]=   
                         3      5      7    9      4      6      8      3
    4       6       8   a    3 a    3 a    a    3 a    6 a    3 a    5 a
10 a  + 19 a  + 10 a  + -- + ---- + ---- + -- - ---- - ---- - ---- - ---- - 
                         3     3      3     3     2      2      2     z
                        z     z      z     z     z      z      z
 
        5       7      9
    12 a    12 a    5 a        3         5         7        9      11
>   ----- - ----- - ---- + 11 a  z + 27 a  z + 25 a  z + 8 a  z - a   z - 
      z       z      z
 
        4  2       6  2       8  2    10  2       3  3       5  3       7  3
>   11 a  z  - 23 a  z  - 13 a  z  - a   z  - 12 a  z  - 37 a  z  - 28 a  z  - 
 
       9  3      6  4      8  4      3  5       5  5       7  5      4  6
>   3 a  z  + 9 a  z  + 9 a  z  + 6 a  z  + 22 a  z  + 16 a  z  + 4 a  z  + 
 
       6  6      8  6    3  7      5  7      7  7    4  8    6  8
>   2 a  z  - 2 a  z  - a  z  - 4 a  z  - 3 a  z  - a  z  - a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
2    3      1        2        1        2        1        4        2
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
 6    4    18  6    16  6    14  6    16  5    14  4    12  4    10  4
q    q    q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      2        1        2        4       1      1      1     t     2
>   ------ + ------ + ------ + ----- + ----- + ---- + ---- + -- + t
     12  3    10  3    10  2    8  2    6  2    8      6      4
    q   t    q   t    q   t    q  t    q  t    q  t   q  t   q


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L10n108
L10n107
L10n107
L10n109
L10n109