PD Presentation: |
X6172 X5,12,6,13 X3849 X15,2,16,3 X16,7,17,8 X19,11,20,14 X13,15,14,20 X9,18,10,19 X11,10,12,5 X4,17,1,18 |
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... |
In[2]:= | Length[Skeleton[L]] |
Out[2]= | 4 |
In[3]:= | Show[DrawMorseLink[Link[10, NonAlternating, 108]]] |
|  |
Out[3]= | -Graphics- |
In[4]:= | PD[L = Link[10, NonAlternating, 108]] |
Out[4]= | PD[X[6, 1, 7, 2], X[5, 12, 6, 13], X[3, 8, 4, 9], X[15, 2, 16, 3],
> X[16, 7, 17, 8], X[19, 11, 20, 14], X[13, 15, 14, 20], X[9, 18, 10, 19],
> X[11, 10, 12, 5], X[4, 17, 1, 18]] |
In[5]:= | GaussCode[L] |
Out[5]= | GaussCode[{1, 4, -3, -10}, {-9, 2, -7, 6}, {-2, -1, 5, 3, -8, 9},
> {-4, -5, 10, 8, -6, 7}] |
In[6]:= | Jones[L][q] |
Out[6]= | -(17/2) -(15/2) 3 -(11/2) 4 -(7/2) 3 -(3/2)
-q + q - ----- + q - ---- + q - ---- + q -
13/2 9/2 5/2
q q q
1
> -------
Sqrt[q] |
In[7]:= | A2Invariant[L][q] |
Out[7]= | -30 2 4 7 10 11 13 10 9 6 4 2 -4 -2
q + --- + --- + --- + --- + --- + --- + --- + --- + --- + -- + -- + q + q
26 24 22 20 18 16 14 12 10 8 6
q q q q q q q q q q q |
In[8]:= | HOMFLYPT[Link[10, NonAlternating, 108]][a, z] |
Out[8]= | 3 5 7 9 3 5 7 9
a 3 a 3 a a 4 a 9 a 6 a a 3 5
-(--) + ---- - ---- + -- - ---- + ---- - ---- + -- - 7 a z + 13 a z -
3 3 3 3 z z z z
z z z z
7 9 3 3 5 3 7 3 3 5 5 5 7 5
> 7 a z + a z - 5 a z + 12 a z - 5 a z - a z + 6 a z - a z +
5 7
> a z |
In[9]:= | Kauffman[Link[10, NonAlternating, 108]][a, z] |
Out[9]= | 3 5 7 9 4 6 8 3
4 6 8 a 3 a 3 a a 3 a 6 a 3 a 5 a
10 a + 19 a + 10 a + -- + ---- + ---- + -- - ---- - ---- - ---- - ---- -
3 3 3 3 2 2 2 z
z z z z z z z
5 7 9
12 a 12 a 5 a 3 5 7 9 11
> ----- - ----- - ---- + 11 a z + 27 a z + 25 a z + 8 a z - a z -
z z z
4 2 6 2 8 2 10 2 3 3 5 3 7 3
> 11 a z - 23 a z - 13 a z - a z - 12 a z - 37 a z - 28 a z -
9 3 6 4 8 4 3 5 5 5 7 5 4 6
> 3 a z + 9 a z + 9 a z + 6 a z + 22 a z + 16 a z + 4 a z +
6 6 8 6 3 7 5 7 7 7 4 8 6 8
> 2 a z - 2 a z - a z - 4 a z - 3 a z - a z - a z |
In[10]:= | Kh[L][q, t] |
Out[10]= | 2 3 1 2 1 2 1 4 2
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + ------ +
6 4 18 6 16 6 14 6 16 5 14 4 12 4 10 4
q q q t q t q t q t q t q t q t
2 1 2 4 1 1 1 t 2
> ------ + ------ + ------ + ----- + ----- + ---- + ---- + -- + t
12 3 10 3 10 2 8 2 6 2 8 6 4
q t q t q t q t q t q t q t q |