Next: 7 Invariants
Up: The Mathematica Package KnotTheory`
Previous: 5.2 Drawing Braids
  Contents
  Index
In[2]:= ?Crossings
In[3]:= ?PositiveCrossings
In[4]:= ?NegativeCrossings
|
Thus here's one tautology and one easy example:
In[5]:= | Crossings /@ {Knot[0, 1], TorusKnot[11,10]} |
Out[5]= | {0, 99} |
And another easy example:
In[6]:= | K=Knot[6, 2]; {PositiveCrossings[K], NegativeCrossings[K]} |
Out[6]= | {2, 4} |
In[7]:= ?PositiveQ
In[8]:= ?NegativeQ
|
For example,
In[9]:= | PositiveQ /@ {X[1,3,2,4], X[1,4,2,3], Xp[1,3,2,4], Xp[1,4,2,3]} |
Out[9]= | {False, True, True, True} |
In[10]:= ?ConnectedSum
|
The connected sum
of the knot
with itself has 8 crossings
(unsurprisingly):
In[11]:= | K = ConnectedSum[Knot[4,1], Knot[4,1]] |
Out[11]= | ConnectedSum[Knot[4, 1], Knot[4, 1]] |
In[12]:= | Crossings[K] |
Out[12]= | 8 |
It is also nice to know that, as expected, the Jones polynomial of is
the square of the Jones polynomial of
:
In[13]:= | Jones[K][q] == Expand[Jones[Knot[4,1]][q]^2] |
Out[13]= | True |
It is less nice to know that the Jones polynomial cannot tell apart
from the knot
:
In[14]:= | Jones[K][q] == Jones[Knot[8,9]][q] |
Out[14]= | True |
But isn't equivalent to
;
indeed, their Alexander polynomials are different:
In[15]:= | {Alexander[K][t], Alexander[Knot[8,9]][t]} |
Out[15]= | -2 6 2 -3 3 5 2 3 {11 + t - - - 6 t + t , 7 - t + -- - - - 5 t + 3 t - t } t 2 t t |