© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L9n22
L9n22
L9n24
L9n24
L9n23
Knotscape
This page is passe. Go here instead!

The 3-Component Link

L9n23

Visit L9n23's page at Knotilus!

Acknowledgement

L9n23 as Morse Link
DrawMorseLink

PD Presentation: X6172 X5,12,6,13 X3849 X13,2,14,3 X14,7,15,8 X11,16,12,17 X9,11,10,18 X17,5,18,10 X4,15,1,16

Gauss Code: {{1, 4, -3, -9}, {-2, -1, 5, 3, -7, 8}, {-6, 2, -4, -5, 9, 6, -8, 7}}

Jones Polynomial: - q-7 + 2q-6 - q-5 + 3q-4 - q-3 + 2q-2 - q-1 + 1

A2 (sl(3)) Invariant: - q-26 + q-20 + 2q-18 + 3q-16 + 5q-14 + 4q-12 + 5q-10 + 3q-8 + 2q-6 + q-4 + q-2 + 1

HOMFLY-PT Polynomial: a2z-2 + 3a2 + 4a2z2 + a2z4 - 2a4z-2 - 5a4 - 7a4z2 - 5a4z4 - a4z6 + a6z-2 + 3a6 + 4a6z2 + a6z4 - a8

Kauffman Polynomial: a2z-2 - 4a2 + 7a2z2 - 5a2z4 + a2z6 - 2a3z-1 + 3a3z + 2a3z3 - 4a3z5 + a3z7 + 2a4z-2 - 9a4 + 18a4z2 - 14a4z4 + 3a4z6 - 2a5z-1 + 5a5z - a5z3 - 3a5z5 + a5z7 + a6z-2 - 8a6 + 13a6z2 - 9a6z4 + 2a6z6 + 3a7z - 3a7z3 + a7z5 - 2a8 + 2a8z2 + a9z

Khovanov Homology:
trqj r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2
j = 1       1
j = -1        
j = -3     21 
j = -5   111  
j = -7   31   
j = -9 112    
j = -11 21     
j = -13 1      
j = -151       


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
3
In[3]:=
Show[DrawMorseLink[Link[9, NonAlternating, 23]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[9, NonAlternating, 23]]
Out[4]=   
PD[X[6, 1, 7, 2], X[5, 12, 6, 13], X[3, 8, 4, 9], X[13, 2, 14, 3], 
 
>   X[14, 7, 15, 8], X[11, 16, 12, 17], X[9, 11, 10, 18], X[17, 5, 18, 10], 
 
>   X[4, 15, 1, 16]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, 4, -3, -9}, {-2, -1, 5, 3, -7, 8}, {-6, 2, -4, -5, 9, 6, -8, 7}]
In[6]:=
Jones[L][q]
Out[6]=   
     -7   2     -5   3     -3   2    1
1 - q   + -- - q   + -- - q   + -- - -
           6          4          2   q
          q          q          q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -26    -20    2     3     5     4     5    3    2     -4    -2
1 - q    + q    + --- + --- + --- + --- + --- + -- + -- + q   + q
                   18    16    14    12    10    8    6
                  q     q     q     q     q     q    q
In[8]:=
HOMFLYPT[Link[9, NonAlternating, 23]][a, z]
Out[8]=   
                           2      4    6
   2      4      6    8   a    2 a    a       2  2      4  2      6  2
3 a  - 5 a  + 3 a  - a  + -- - ---- + -- + 4 a  z  - 7 a  z  + 4 a  z  + 
                           2     2     2
                          z     z     z
 
     2  4      4  4    6  4    4  6
>   a  z  - 5 a  z  + a  z  - a  z
In[9]:=
Kauffman[Link[9, NonAlternating, 23]][a, z]
Out[9]=   
                              2      4    6      3      5
    2      4      6      8   a    2 a    a    2 a    2 a       3        5
-4 a  - 9 a  - 8 a  - 2 a  + -- + ---- + -- - ---- - ---- + 3 a  z + 5 a  z + 
                              2     2     2    z      z
                             z     z     z
 
       7      9        2  2       4  2       6  2      8  2      3  3    5  3
>   3 a  z + a  z + 7 a  z  + 18 a  z  + 13 a  z  + 2 a  z  + 2 a  z  - a  z  - 
 
       7  3      2  4       4  4      6  4      3  5      5  5    7  5
>   3 a  z  - 5 a  z  - 14 a  z  - 9 a  z  - 4 a  z  - 3 a  z  + a  z  + 
 
     2  6      4  6      6  6    3  7    5  7
>   a  z  + 3 a  z  + 2 a  z  + a  z  + a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
 -5   2      1        1        2        1       1        1       2       3
q   + -- + ------ + ------ + ------ + ----- + ------ + ----- + ----- + ----- + 
       3    15  5    13  4    11  4    9  4    11  3    9  3    9  2    7  2
      q    q   t    q   t    q   t    q  t    q   t    q  t    q  t    q  t
 
      1      1      1     t       2
>   ----- + ---- + ---- + -- + q t
     5  2    7      5      3
    q  t    q  t   q  t   q


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L9n23
L9n22
L9n22
L9n24
L9n24