© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L9a7
L9a7
L9a9
L9a9
L9a8
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L9a8

Visit L9a8's page at Knotilus!

Acknowledgement

L9a8 as Morse Link
DrawMorseLink

PD Presentation: X6172 X10,4,11,3 X16,8,17,7 X18,13,5,14 X14,17,15,18 X12,10,13,9 X8,16,9,15 X2536 X4,12,1,11

Gauss Code: {{1, -8, 2, -9}, {8, -1, 3, -7, 6, -2, 9, -6, 4, -5, 7, -3, 5, -4}}

Jones Polynomial: - q-7/2 + 2q-5/2 - 5q-3/2 + 7q-1/2 - 8q1/2 + 8q3/2 - 8q5/2 + 5q7/2 - 3q9/2 + q11/2

A2 (sl(3)) Invariant: q-12 + q-10 + 3q-6 - q-2 + 1 - 2q2 + 2q4 + 2q8 + 2q10 - q12 + 2q14 - q18

HOMFLY-PT Polynomial: a-5z - a-3z-1 - 2a-3z - 2a-3z3 + 2a-1z-1 + 3a-1z + 2a-1z3 + a-1z5 - 2az-1 - 3az - 2az3 + a3z-1 + a3z

Kauffman Polynomial: a-6z2 - a-6z4 - 2a-5z + 4a-5z3 - 3a-5z5 - a-4z2 + 4a-4z4 - 4a-4z6 + a-3z-1 - 5a-3z + 7a-3z3 - a-3z5 - 3a-3z7 - 3a-2z2 + 10a-2z4 - 6a-2z6 - a-2z8 + 2a-1z-1 - 8a-1z + 8a-1z3 + 3a-1z5 - 5a-1z7 + 1 - 3z2 + 9z4 - 4z6 - z8 + 2az-1 - 8az + 8az3 - 2az7 - 2a2z2 + 4a2z4 - 2a2z6 + a3z-1 - 3a3z + 3a3z3 - a3z5

Khovanov Homology:
trqj r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5
j = 12         1
j = 10        2 
j = 8       31 
j = 6      52  
j = 4     33   
j = 2    55    
j = 0   45     
j = -2  13      
j = -4 14       
j = -6 1        
j = -81         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[9, Alternating, 8]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[9, Alternating, 8]]
Out[4]=   
PD[X[6, 1, 7, 2], X[10, 4, 11, 3], X[16, 8, 17, 7], X[18, 13, 5, 14], 
 
>   X[14, 17, 15, 18], X[12, 10, 13, 9], X[8, 16, 9, 15], X[2, 5, 3, 6], 
 
>   X[4, 12, 1, 11]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -8, 2, -9}, {8, -1, 3, -7, 6, -2, 9, -6, 4, -5, 7, -3, 5, -4}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(7/2)    2      5        7                     3/2      5/2      7/2
-q       + ---- - ---- + ------- - 8 Sqrt[q] + 8 q    - 8 q    + 5 q    - 
            5/2    3/2   Sqrt[q]
           q      q
 
       9/2    11/2
>   3 q    + q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -12    -10   3     -2      2      4      8      10    12      14    18
1 + q    + q    + -- - q   - 2 q  + 2 q  + 2 q  + 2 q   - q   + 2 q   - q
                   6
                  q
In[8]:=
HOMFLYPT[Link[9, Alternating, 8]][a, z]
Out[8]=   
                       3                                      3      3
   1       2    2 a   a    z    2 z   3 z            3     2 z    2 z
-(----) + --- - --- + -- + -- - --- + --- - 3 a z + a  z - ---- + ---- - 
   3      a z    z    z     5    3     a                     3     a
  a  z                     a    a                           a
 
              5
         3   z
>   2 a z  + --
             a
In[9]:=
Kauffman[Link[9, Alternating, 8]][a, z]
Out[9]=   
                        3                                              2    2
     1      2    2 a   a    2 z   5 z   8 z              3        2   z    z
1 + ---- + --- + --- + -- - --- - --- - --- - 8 a z - 3 a  z - 3 z  + -- - -- - 
     3     a z    z    z     5     3     a                             6    4
    a  z                    a     a                                   a    a
 
       2                3      3      3                              4      4
    3 z       2  2   4 z    7 z    8 z         3      3  3      4   z    4 z
>   ---- - 2 a  z  + ---- + ---- + ---- + 8 a z  + 3 a  z  + 9 z  - -- + ---- + 
      2                5      3     a                                6     4
     a                a      a                                      a     a
 
        4                5    5      5                     6      6
    10 z       2  4   3 z    z    3 z     3  5      6   4 z    6 z       2  6
>   ----- + 4 a  z  - ---- - -- + ---- - a  z  - 4 z  - ---- - ---- - 2 a  z  - 
      2                 5     3    a                      4      2
     a                 a     a                           a      a
 
       7      7                  8
    3 z    5 z         7    8   z
>   ---- - ---- - 2 a z  - z  - --
      3     a                    2
     a                          a
In[10]:=
Kh[L][q, t]
Out[10]=   
       2     1       1       1       4       1     4    3        2        4
5 + 5 q  + ----- + ----- + ----- + ----- + ----- + - + ---- + 5 q  t + 3 q  t + 
            8  4    6  3    4  3    4  2    2  2   t    2
           q  t    q  t    q  t    q  t    q  t        q  t
 
       4  2      6  2      6  3      8  3    8  4      10  4    12  5
>   3 q  t  + 5 q  t  + 2 q  t  + 3 q  t  + q  t  + 2 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L9a8
L9a7
L9a7
L9a9
L9a9